...
首页> 外文期刊>Materials Science and Engineering >A physical-based constitutive model to describe the strain-hardening and dynamic recovery behaviors of 5754 aluminum alloy
【24h】

A physical-based constitutive model to describe the strain-hardening and dynamic recovery behaviors of 5754 aluminum alloy

机译:基于物理的本构模型描述5754铝合金的应变硬化和动态恢复行为

获取原文
获取原文并翻译 | 示例
           

摘要

Plane strain hot compression tests of 5754 aluminum alloy were conducted on a Gleeble-3500 thermo-mechanical simulator under various conditions. These tests simulated flat rolling to investigate how hardening and softening behaviors respond to controlled parameters, such as the deformation temperature and strain rate. This data allowed the parameters for the hot rolling process to be optimized. The restoration mechanism primarily proceeds via dynamic recovery, as shown by the deformed microstructure analysis and strain-stress curves. The dislocation density was used as internal state variable to develop a physical constitutive model, which characterized the evolution of the dislocation density caused by strain-hardening and dynamic recovery behaviors. The relationship between the flow stress and the dislocation density could be quantified with this model. The strain-hardening and softening behavior was analyzed in detail by Kocks-Mecking type plots. Furthermore, the relevant material coefficients were expressed as functions related to the temperature and the strain rate. The experimental flow stress was found to be in close agreement with the calculated, which confirms that the model developed herein can represent the flow behaviors of the 5754 aluminum alloy effectively.
机译:在Gleeble-3500热力机械模拟器上的各种条件下,对5754铝合金进行了平面应变热压缩试验。这些测试模拟了平面轧制,以研究硬化和软化行为如何响应受控参数(例如变形温度和应变速率)。该数据可以优化热轧工艺的参数。恢复机制主要通过动态恢复进行,如变形的微观结构分析和应变-应力曲线所示。将位错密度用作内部状态变量以建立物理本构模型,该模型描述了由应变硬化和动态恢复行为引起的位错密度的演变。用该模型可以量化流变应力与位错密度之间的关系。通过Kocks-Mecking型图详细分析了应变硬化和软化行为。此外,相关的材料系数表示为与温度和应变率有关的函数。发现实验流动应力与计算值非常吻合,这证实了本文开发的模型可以有效地表示5754铝合金的流动行为。

著录项

  • 来源
    《Materials Science and Engineering》 |2017年第24期|106-113|共8页
  • 作者单位

    State Key Laboratory of High-performance Complicated Manufacturing, Central South University, Changsha 410083, China,Light Alloy Research Institute, Central South University, Changsha 410083, China,School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China;

    State Key Laboratory of High-performance Complicated Manufacturing, Central South University, Changsha 410083, China,School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China;

    State Key Laboratory of High-performance Complicated Manufacturing, Central South University, Changsha 410083, China,Light Alloy Research Institute, Central South University, Changsha 410083, China;

    State Key Laboratory of High-performance Complicated Manufacturing, Central South University, Changsha 410083, China,Light Alloy Research Institute, Central South University, Changsha 410083, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    5754 aluminum alloy; Plane strain hot compression; Dynamic recovery; Microstructural evolution; Constitutive model;

    机译:5754铝合金;平面应变热压缩;动态恢复;微观结构演变;本构模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号