首页> 外文期刊>Materials Science and Engineering >Tailored Mg and Cu contents affecting the microstructures and mechanical properties of high-strength Al-Zn-Mg-Cu alloys
【24h】

Tailored Mg and Cu contents affecting the microstructures and mechanical properties of high-strength Al-Zn-Mg-Cu alloys

机译:定制的Mg和Cu含量会影响高强度Al-Zn-Mg-Cu合金的组织和力学性能

获取原文
获取原文并翻译 | 示例
           

摘要

The effects of systematic variation of Mg and Cu contents (Mg: ~1.5, 2.0, and 2.5, Cu: ~1.5, 2.0, 2.5, and 2.9 wt%) on the microstructures and mechanical properties of high-Zn (8.5 wt%) Al-Zn-Mg-Cu alloys are investigated. Fracture toughness is experimentally approached by the Kahn tear test. Results showed that, under same ageing condition, the conductivity, hardness, strength and toughness of the designed alloys are primarily determined by Mg content: the higher the Mg content, the higher the hardness and strength, but the lower the conductivity and toughness. Increasing Cu content can produce a similar phenomenon, but with weak effects compared with Mg. The experiments and thermodynamic/kinetic simulation indicate that, increasing Mg/Cu content can improve the volume fraction of matrix precipitates, so as to improve the strength and hardness, and the effects of Mg are stronger than Cu. Additionally, increasing Mg content can somewhat reduce the sizes of the matrix precipitates especially in overaged condition, which is also good for the strength and hardness. However, with increasing Mg content the area fraction of the grain boundary precipitates (GBPs) and the yield stress contrast between grain interiors and precipitate free zones (PFZs) at grain boundary can be increased greatly, consequently promoting intergranular fracture and decreasing toughness. For the alloys with low/middle Mg content (e.g., 1.5/2.0 wt%), increasing Cu content will improve the yield stress contrast between grain interiors and PFZs as well as the recrystallization degree, so that intergranular fracture will be promoted for toughness reduction. For the alloys with high Mg content (e.g., 2.5 wt%), the increased undissolved phases induced by high Cu content will promote fracture atear coarse constituent particles, favoring further toughness reduction.
机译:Mg和Cu含量(Mg:〜1.5、2.0和2.5,Cu:〜1.5、2.0、2.5和2.9 wt%)的系统变化对高锌(8.5 wt%)的组织和力学性能的影响研究了Al-Zn-Mg-Cu合金。卡恩撕裂试验通过实验达到断裂韧性。结果表明,在相同的时效条件下,所设计合金的电导率,硬度,强度和韧性主要取决于镁的含量:镁含量越高,硬度和强度越高,而电导率和韧性越低。铜含量的增加也会产生类似的现象,但与镁相比,其作用较弱。实验和热力学/动力学模拟表明,增加Mg / Cu含量可以提高基体沉淀的体积分数,从而提高强度和硬度,并且Mg的作用强于Cu。另外,增加Mg的含量会在某种程度上减小基体沉淀物的尺寸,特别是在过时的条件下,这也有利于强度和硬度。然而,随着镁含量的增加,晶界析出物的面积分数(GBPs)以及晶粒内部和晶界处无析出物区(PFZs)之间的屈服应力反差会大大增加,从而促进晶间断裂并降低韧性。对于低/中镁含量(例如1.5 / 2.0 wt%)的合金,增加Cu含量将改善晶粒内部与PFZ之间的屈服应力对比以及再结晶度,从而促进晶间断裂以降低韧性。对于具有高Mg含量(例如2.5wt%)的合金,由高Cu含量引起的增加的不溶相将促进在/附近的粗大组分颗粒处的断裂,有利于进一步降低韧性。

著录项

  • 来源
    《Materials Science and Engineering》 |2016年第7期|269-283|共15页
  • 作者单位

    State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;

    State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;

    CompuTherm LLC, Madison, WI 53706, USA;

    CompuTherm LLC, Madison, WI 53706, USA;

    State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;

    State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China,State Key Laboratory for Fabrication and Processes of Nonferrous Metals, General Research Institute for Nonferrous Metals, Beijing 700088, China;

    State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;

    State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Al-Zn-Mg-Cu alloy; Alloy composition; Microstructure; Mechanical property; Computational thermodynamics;

    机译:Al-Zn-Mg-Cu合金;合金成分微观结构机械性能计算热力学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号