首页> 外文期刊>Materials Science and Engineering >Quantification of nitrogen impurity and estimated Orowan strengthening through secondary ion mass spectroscopy in aluminum cryomilled for extended durations
【24h】

Quantification of nitrogen impurity and estimated Orowan strengthening through secondary ion mass spectroscopy in aluminum cryomilled for extended durations

机译:通过二次离子质谱对长时间冷冻的铝中的氮杂质进行定量和估计的Orowan增强

获取原文
获取原文并翻译 | 示例
           

摘要

The strength of aluminum alloys and composites processed through powder metallurgy can be improved through the addition of nano-scale dispersoids introduced during the cryomilling process. Quantification of Orowan strengthening from these dispersoids requires a reliable measurement of the impurity concentration. Secondary ion mass spectrometry (SIMS) was used to quantify the nitrogen impurity concentration using a ~(14)N ion implanted standard. An analytical approach is devised to determine the nitrogen concentration of an aluminum alloy and composite based on SIMS measurements. Results are compared to the measurements carried out by gas fusion analysis. An increase in nitrogen concentration was observed with an increase in cryomilling time up to 72 h. The nitrogen concentration varied from 1.64 ± 0.17 at% (0.80 ± 0.08 wt%) to 19.12 ± 1.10 at% (13.17 ± 0.71 wt%) for the 8 h and 72 h cryomilled nanocrystalline AA5083, respectively. Assuming that all nitrogen reacts to form dispersoids, the nitrogen concentration determined was used to calculate the volume and weight fractions of dispersoids, which in turn was used to estimate the strengthening contribution via Orowan strengthening. Orowan strengthening was calculated using dispersoids of 3, 9 and 15 nm. The range of Orowan strengthening contribution was estimated, in MPa, to be from 7.69 ± 0.78 to 3.03 ± 0.31 for the 8 h nanocrystalline AA5083 sample, and 154.97 ± 10.29 to 61.09 ± 4.06 for the 72 h nanocrystalline AA5083 sample.
机译:通过粉末冶金加工的铝合金和复合材料的强度可以通过添加在低温研磨过程中引入的纳米级分散体来提高。从这些分散质量化Orowan强化需要可靠地测量杂质浓度。二次离子质谱(SIMS)用于通过〜(14)N离子注入标准液对氮杂质浓度进行定量。设计了一种分析方法,用于基于SIMS测量确定铝合金和复合材料的氮浓度。将结果与通过气体融合分析进行的测量进行比较。观察到氮浓度增加,而冷冻研磨时间延长到72小时。对于8小时和72小时冷冻研磨的纳米晶体A5083,氮浓度分别从1.64±0.17 at%(0.80±0.08 wt%)变化到19.12±1.10 at%(13.17±0.71 wt%)。假设所有氮反应形成弥散体,确定的氮浓度用于计算弥散体的体积和重量分数,进而用于评估通过Orowan强化的强化贡献。使用3、9和15 nm的弥散体计算Orowan增强。对于8 h纳米晶A5083样品,估计的Orowan增强贡献范围为7.69±0.78至3.03±0.31,对于72 h纳米晶A5083样品为154.97±10.29至61.09±4.06。

著录项

  • 来源
    《Materials Science and Engineering》 |2015年第11期|412-417|共6页
  • 作者单位

    Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA;

    Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA;

    Pittsburgh Materials Technology, Jefferson Hills, PA 15025, USA;

    Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA;

    Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Aluminum alloy; Cryomilling; Nitrogen; Orowan strengthening; Secondary ion mass spectrometry;

    机译:铝合金;低温研磨氮;加强Orowan;二次离子质谱;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号