首页> 外文期刊>Materials Science and Engineering >Modification of the grain structure, γ phase morphology and texture in AZ81 Mg alloy through accumulative back extrusion
【24h】

Modification of the grain structure, γ phase morphology and texture in AZ81 Mg alloy through accumulative back extrusion

机译:累积反挤压对AZ81镁合金晶粒结构,γ相形态和织构的改性

获取原文
获取原文并翻译 | 示例
           

摘要

The capability of accumulative back extrusion (ABE), as a recently developed severe plastic deformation technique, has been considered to modify the microstructural characteristics of a Mg-Al-Zn alloy composing higher Al content. The results indicate that applying the ABE process up to five passes led to simultaneous modification of the γ phase morphology, grain structure and deformation texture of the experimental alloy. The morphology of the eutectic γ phase has been sequentially altered from initial coarse network to elongated and finally spherical morphologies with an average globularity and diameter of 0.85 and 7.5 μm, respectively. This has been justified considering the mechanical fragmentation and thermal disintegration of the eutectic particles through necking phenomena. In addition the initial coarse grain structure of the cast alloy (~330 μm) has also been significantly refined (d~1 μm). This substantial grain refinement is attributed to the dynamic recrystallization enhancement in connection with pinning effect of crushed γ particles during successive passes. The typical basal texture has been modified to a weak random texture having grains with their normal distribution in a desirably wide range of deviation angles from normal direction. The occurrence of particle stimulated nucleation, particle pinning, and shear banding phenomena are suggested as the main reasons causing the weak scattered deformation texture.
机译:累积的反向挤压(ABE)能力是最近开发的一种严格的塑性变形技术,已被认为可以改变含铝量更高的Mg-Al-Zn合金的微观结构特征。结果表明,采用ABE工艺最多进行5次加工可同时改变实验合金的γ相形态,晶粒结构和变形织构。共晶γ相的形态已从最初的粗晶网络依次变为细长的,最终为球形的形态,平均球形度和直径分别为0.85和7.5μm。考虑到通过颈缩现象的共晶颗粒的机械破碎和热崩解,这是合理的。另外,铸造合金的初始粗晶粒组织(〜330μm)也得到了显着改善(d〜1μm)。这种实质性的晶粒细化归因于动态重结晶的增强,与在连续通过过程中压碎的γ粒子的钉扎效应有关。典型的基础纹理已被修改为具有随机分布的微弱随机纹理,这些晶粒的法向分布与法线方向的偏离角度在理想的宽范围内。建议引起颗粒激发的形核,颗粒钉扎和剪切带现象是引起弱的分散变形织构的主要原因。

著录项

  • 来源
    《Materials Science and Engineering》 |2014年第10期|99-108|共10页
  • 作者单位

    Hot Deformation & Thermomechanical Processing of High Performance Engineering Materials Lab, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran;

    Hot Deformation & Thermomechanical Processing of High Performance Engineering Materials Lab, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran;

    Hot Deformation & Thermomechanical Processing of High Performance Engineering Materials Lab, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Magnesium; Severe plastic deformation; Eutectic γ phase; Grain structure; Texture;

    机译:镁;严重的塑性变形;共晶γ相;晶粒结构质地;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号