首页> 外文期刊>Materials Science and Engineering >G-phase precipitation in austenitic stainless steel deformed by high pressure torsion
【24h】

G-phase precipitation in austenitic stainless steel deformed by high pressure torsion

机译:高压扭转使奥氏体不锈钢产生G相析出

获取原文
获取原文并翻译 | 示例
           

摘要

G phase an intermetallic silicide has been observed in martensite of precipitation hardened stainless steels and in the ferrite of dual (austenite and ferrite) phase stainless steels. In both cases, before G-phase precipitates, the matrix composition changes due to spinodal decomposition and solute partitioning between ferrite and austenite. Thus in the present study, single bcc phase and high Ni content stainless steel, was selected to study G-phase precipitation expecting elimination of the interference from spinodal decomposition and solute partitioning. Fe-18Cr-8Ni (SUS304) austenitic stainless steel samples were deformed at room temperature by high pressure torsion to obtain 100% volume fraction of deformation induced martensite (α'). HPT deformation was chosen due to its ability to induce high strength by grain refinement and also attain 100% α' at room temperature. After annealing at 400 ℃ for 500 h, G-phase precipitation was observed in the fully martensitic matrix without spinodal decomposition. Crystallographic analysis of annealed samples using high resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS) detected a Mn-Ni-Si rich G-phase with fcc crystal structure with lattice parameter of 1.16 nm. The value of lattice parameter corresponds well with previously reported values. Chemical analysis by atom probe tomography (APT) showed G-phase of composition Mn2i Ni_(50)Si_(24)Fe_4Cr. Tensile tests showed that G-phase precipitation leads to the embrittlement in the ferrite phase. G-phase precipitation in a single bcc phase specimen without prior spinodal decomposition and embrittlement solely due to G-phase is reported for the first time.
机译:在沉淀硬化不锈钢的马氏体和双相(奥氏体和铁素体)不锈钢的铁素体中均观察到了G相金属间硅化物。在这两种情况下,在G相析出之前,基体组成都会由于旋节线分解和铁素体与奥氏体之间的溶质分配而发生变化。因此,在本研究中,选择单bcc相和高Ni含量的不锈钢来研究G相沉淀,期望消除旋节线分解和溶质分配的干扰。将Fe-18Cr-8Ni(SUS304)奥氏体不锈钢样品在室温下通过高压扭力变形,以获得100%体积分数的变形诱发马氏体(α')。选择HPT变形是因为它具有通过晶粒细化诱导高强度的能力,并且在室温下也能达到100%α'。在400℃退火500 h后,在完全的马氏体基体中观察到了G相沉淀,没有旋节线分解。使用高分辨率透射电子显微镜(HRTEM)和能量色散光谱(EDS)对退火样品进行晶体学分析,发现富锰酸镍N的G相具有fcc晶体结构,晶格参数为1.16 nm。晶格参数的值与先前报告的值非常吻合。原子探针层析成像(APT)的化学分析表明,组成为Mn2i Ni_(50)Si_(24)Fe_4Cr的G相。拉伸试验表明,G相的析出导致铁素体相的脆化。首次报道了单个bcc相样品中的G相沉淀,而没有事先的旋节线分解和脆化仅由G相引起。

著录项

  • 来源
    《Materials Science and Engineering》 |2012年第30期|p.194-198|共5页
  • 作者单位

    Functional Materials Engineering, Toyohashi University of Technology, 1-1, Toyohashi, Aichi 441-8580, Japan;

    Functional Materials Engineering, Toyohashi University of Technology, 1-1, Toyohashi, Aichi 441-8580, Japan;

    National Institute for Materials Sciences, Sengen 1-2-1, Tsukuba 305-0047, Japan;

    National Institute for Materials Sciences, Sengen 1-2-1, Tsukuba 305-0047, Japan;

    Functional Materials Engineering, Toyohashi University of Technology, 1-1, Toyohashi, Aichi 441-8580, Japan;

    Functional Materials Engineering, Toyohashi University of Technology, 1-1, Toyohashi, Aichi 441-8580, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    austenitic steels; spinodal decomposition; g-phase precipitation; embritlement;

    机译:奥氏体钢;旋节线分解;g相沉淀;rit;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号