首页> 外文期刊>Materials Science and Engineering >The martensitic crystallography and strengthening mechanisms of ultra-high strength rare earth H13 steel
【24h】

The martensitic crystallography and strengthening mechanisms of ultra-high strength rare earth H13 steel

机译:马氏体晶体学和超高强度稀土H13钢的强化机制

获取原文
获取原文并翻译 | 示例
       

摘要

Advanced die manufacture demands hot work die steels with superior strength. Unfortunately, due to the rare understanding of the crystallographic structures and strengthening mechanisms of H13 steel, the contradictory between ultra-high strength and low ductility remains inevitably as far as authors known. In this work, we developed a strategy combining rare earth addition, electroslag remelting and pre-tempering treatment, and prepared rare earth (Re) H13 steel with ultra-high ultimate tensile strength up to 2 gigapascals (GPa) and good ductility. The Re H13 steel underwent pre-tempering treatment exhibited hardness of ca. 53.6 HRC, ultimate tensile strength of ca. 2029 MPa, yield strength of ca. 1654 MPa, total elongation of ca. 9.3% and impact energy of ca. 16.0 J (superior grade of NADCA#207-2003 standard), respectively. The good ductility of Re H13 steel mainly attributed to high density of high angle grain boundaries (45° <) of ca. 1.45 μm~(-1), which derived from high length fraction of V1/V2 inter-variant boundaries (66.9%) by quenching, as well as coarsen sub-grains and variants refinement by subsequent tempering. The dislocation and carbide precipitates have the dominant role in controlling the strengthening of tempered Re H13 steel. The ultra-high strength of Re H13 steel mainly attributed to its high dislocation density (5.72 × 1014 m~2) and high carbide precipitates density (10.1 μm~(-2)), which raised by 73.3% and 21.7% compared to Re H13 steel treated by conventional twice tempering (600 °C) process. The present work not only reveals the strengthening mechanisms of ultra-high strength Re H13 steel, but also characterizes the contributing microstructure feature to its good ductility.
机译:先进的模具需要热量的钢材,具有卓越的力量。遗憾的是,由于罕见地理解H13钢的晶体结构和加强机制,超高强度和低延展性之间的矛盾是不可避免的,就众所周知的作者来说是不可避免的。在这项工作中,我们开发了一种结合稀土添加,电子钢雷切和雷力处理的策略,并制备稀土(RE)H13钢,具有超高的极限拉伸强度,最高可达2种Gigapascals(GPA)和良好的延展性。 RE H13钢的接受雷回火治疗表现出CA的硬度。 53.6 HRC,CA的最终拉伸强度。 2029MPa,CA的屈服强度。 1654 MPa,CA总伸长率。 9.3%和CA的冲击能量。 16.0 J(纳迪卡级别的级别级别#207-2003标准)。 RE H13钢的良好延展性主要归因于高角度晶界(45°<)CA的高密度。 1.45μm〜(-1),通过淬火,通过淬火,以及通过随后的回火粗糙的亚颗粒和变体细化来源于V1 / V2间变体间界限(66.9%)。脱位和碳化物沉淀物具有在控制强化RE H13钢的强化方面具有显性作用。 RE H13钢的超高强度主要归因于其高位脱位密度(5.72×1014m〜2)和高碳化物沉淀物密度(10.1μm〜(-2)),与RE相比,升高了73.3%和21.7%通过常规两次回火(600°C)加工处理H13钢。目前的工作不仅揭示了超高强度RE H13钢的强化机制,而且还表征了贡献的微观结构特征到其良好的延展性。

著录项

  • 来源
    《Materials Science and Engineering》 |2020年第21期|140139.1-140139.12|共12页
  • 作者单位

    Institute for Advanced Materials and Technology University of Science and Technology Beijing Beijing 100083 China;

    Institute for Advanced Materials and Technology University of Science and Technology Beijing Beijing 100083 China;

    Institute for Advanced Materials and Technology University of Science and Technology Beijing Beijing 100083 China Key Laboratory for Advanced Materials Processing (MOE) University of Science and Technology Beijing Beijing 100083 China;

    Institute for Advanced Materials and Technology University of Science and Technology Beijing Beijing 100083 China Key Laboratory for Advanced Materials Processing (MOE) University of Science and Technology Beijing Beijing 100083 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    H13 steel; Electroslag remelting; Rare earth; Pre-tempering treatment; Precipitate strengthening; Dislocation strengthening; High angle grain boundary;

    机译:H13钢;电渣重熔;稀土;急性锻炼治疗;沉淀强化;脱臼加强;高角度晶界;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号