首页> 外文期刊>Materials Science and Engineering >Dynamic impact behavior and deformation mechanisms of Cr_(26)Mn_(20)Fe_(20)Co_(20)Ni_(14) high-entropy alloy
【24h】

Dynamic impact behavior and deformation mechanisms of Cr_(26)Mn_(20)Fe_(20)Co_(20)Ni_(14) high-entropy alloy

机译:CR_(26)MN_(20)Fe_(20)CO_(20)Ni_(14)高熵合金的动态冲击性能和变形机制

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, the dynamic impact behavior and linked deformation mechanisms of a Cr_(26)Mn_(20)Fe_(20)Co_(20)Ni_(14) high-entropy alloy (HEA) with face-centered cubic structure were systematically explored. The HEA displays uniform plastic deformation without any adiabatic shear bands at a strain rate range from 1000 to 3000 s~(-1). Moreover, the yield strength exhibits a pronounced strain rate dependence, increasing by 28% from 282 MPa at 1000 s~(-1) to 360 MPa at 3000 s~(-1) The strain hardening exponent, strain rate sensitivity and temperature rise were calculated to be 0.899-0.95, 0.076 and 64.7 K, respectively, indicative of high strain and strain-rate hardening capabilities and strong resistance to thermal softening induced adiabatic shear localization. Detailed microstructural analyses decipher a transition of deformation mechanism from dislocation slip at 1000 s~(-1) to stacking faults (SFs) at 2000 s~(-1) and further to twinning at 3000 s~(-1), respectively. The strengthening mechanisms are delineated as manifold interactions between glide dislocations and SFs, SFs and SFs (i.e. the Lomer-Cottrell locks), and SFs and twins. Our work provides a comprehensive understanding on the dynamic impact behavior, deformation and strengthening mechanisms of Cr_(26)Mn_(20)Fe_(20)Co_(20)Ni_(14) high-entropy alloy.
机译:在这项工作中,系统探讨了CR_(26)MN_(20)FE_(20)CO_(20)CO_(20)NI_(20)NI_(20)NI_(HEA)的CR_(26)MN_(20)FE_(20)CO_(20)高熵合金(HEA)的动态冲击性能得到了系统地探索了具有面对的立方结构的高熵合金(HEA) 。 Hea在应变速率下显示均匀的塑性变形,在应变速率范围为1000至3000 s〜(-1)。此外,屈服强度表现出明显的应变速率依赖性,从3000S〜(-1)在1000 s〜(-1)〜360MPa下增加28%,在3000 s〜(-1)菌株硬化指数,应变率灵敏度和温度升高计算为0.899-0.95,0.076和64.7 k,分别表示高应变和应变率硬化能力和对热软化诱导的绝热剪切定位的强抗性。详细的微观结构分析破译了1000S〜(-1)脱位滑移的变形机制的转变,以在2000 s〜(-1)的堆叠故障(SF),并分别在3000 s〜(-1)下孪生。强化机制被描绘为Glide脱脂和SFS,SFS和SFS(即Lomer-Cottrell锁)和SFS和双胞胎之间的歧管相互作用。我们的作品对CR_(26)MN_(20)FE_(20)CO_(20)NI_(14)高熵合金的动态冲击行为,变形和强化机制提供了全面的理解。

著录项

  • 来源
    《Materials Science and Engineering》 |2021年第8期|141858.1-141858.10|共10页
  • 作者单位

    Nano and Heterogeneous Materials Center School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China;

    Nano and Heterogeneous Materials Center School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China;

    School of Aeronautics Northwestern Polytechnical University Xi'an 710072 China;

    Nano and Heterogeneous Materials Center School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China;

    Nano and Heterogeneous Materials Center School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    High-entropy alloy; Hopkinson impact; Strain hardening; Stacking fault; Twinning; Dislocation slip;

    机译:高熵合金;Hopkinson影响;菌株硬化;堆叠故障;孪生;错开;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号