...
首页> 外文期刊>Materials Science and Engineering >Influence of prior deformation temperature on strain induced martensite formation and its effect on the tensile strengthening behaviour of type 304 SS studied by XRDLPA
【24h】

Influence of prior deformation temperature on strain induced martensite formation and its effect on the tensile strengthening behaviour of type 304 SS studied by XRDLPA

机译:现有变形温度对应变诱导马氏体形成的影响及其对XRDLPA研究304型Ss拉伸强化行为的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Type 304 stainless steel is a metastable austenitic stainless steel that undergoes strain induced transformation from austenite to α′ martensite during deformation at room temperature. Role of prior deformation, by rolling at room temperature and at 200 °C(a temperature at which the strain induced martensitic transformation does not occur), on the subsequent room temperature tensile deformation behaviour of the austenite phase is investigated. The changes in dislocation density of the parent phase and the volume fraction of the martensite formed due to deformation were estimated by X-ray diffraction line profile analysis of data obtained from Beam Line -12 of the Indus 2 synchrotron. The contrast caused by dislocations in the austenite phase has been addressed using the modified Williamson-Hall method. The character of dislocations changes from screw to edge above a critical equivalent strain of ~0.14. The influence of martensite formation on the increase in dislocation density in the austenite phase is confirmed from XRDLPA. An alternative approach to determine dislocation density is proposed which is independent of elastic constants of the material and is found to correlate well with the values determined by the Williamson-Smallman approach. The results obtained from XRDLPA are corroborated with EBSD analysis. It is also seen that the composite strength of the steel, which has undergone different levels of deformation, is related to the changes in dislocation density of austenite and volume fraction of martensite based on Taylor's equation enabling correlation of structure-property.
机译:304型不锈钢是一种稳定的奥氏体不锈钢,在室温变形期间从奥氏体到α'马氏体的菌株诱导转化。通过在室温下轧制和200℃(不会发生应变诱导的马氏体转化的温度),研究了先前变形的作用,研究了奥氏体相的随后的室温拉伸变形行为。通过X射线衍射线轮廓分析估计由Indus 2同步rotron的梁线-12获得的数据的X射线衍射线谱分析来估计母相的偏移密度和形成的马氏体的体积分数的变化。已经使用改性的Williamson-Hall方法解决了由奥氏体相位脱位引起的对比度。脱位的特征从螺钉变为边缘以上〜0.14的临界当量应变。 XRDLPA证实了马氏体形成对奥氏体相中偏离密度的增加的影响。提出了一种确定脱位密度的替代方法,其与材料的弹性常数无关,并且被发现与由威廉姆森 - 小师方法确定的值良好相关。从XRDLPA获得的结果用EBSD分析证实。还可以看出,经过不同水平的变形的钢的复合强度与马氏体的奥氏体和体积分数的变化有关,基于泰勒方程能够相关的结构性质。

著录项

  • 来源
    《Materials Science and Engineering》 |2021年第5期|141960.1-141960.16|共16页
  • 作者单位

    Metallurgy and Materials Croup Indira Gandhi Centre for Atomic Research Kalpakkam 603102 India Homi Bhabha National Institute Anushakthi Nagar Mumbai 400094 India;

    Metallurgy and Materials Croup Indira Gandhi Centre for Atomic Research Kalpakkam 603102 India Homi Bhabha National Institute Anushakthi Nagar Mumbai 400094 India;

    Metallurgy and Materials Croup Indira Gandhi Centre for Atomic Research Kalpakkam 603102 India;

    Metallurgy and Materials Croup Indira Gandhi Centre for Atomic Research Kalpakkam 603102 India Homi Bhabha National Institute Anushakthi Nagar Mumbai 400094 India;

    Metallurgy and Materials Croup Indira Gandhi Centre for Atomic Research Kalpakkam 603102 India Homi Bhabha National Institute Anushakthi Nagar Mumbai 400094 India;

    Metallurgy and Materials Croup Indira Gandhi Centre for Atomic Research Kalpakkam 603102 India;

    Homi Bhabha National Institute Anushakthi Nagar Mumbai 400094 India Beamtine 12 Synchrotrons Utilization Section Indus-2 Raja Ramanna Centre for Advanced Technology Indore 452013 India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Type 304 SS; Strain induced martensite; Synchrotron X-ray diffraction; Line profile analysis; Dislocation density; EBSD;

    机译:304型SS;应变诱导马氏体;同步X射线衍射;线谱分析;脱臼密度;EBSD.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号