首页> 外文期刊>Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing >High cycle fatigue behaviour of a multiphase microalloyed medium carbon steel: a comparison between ferrite-pearlite and tempered martensite microstructures
【24h】

High cycle fatigue behaviour of a multiphase microalloyed medium carbon steel: a comparison between ferrite-pearlite and tempered martensite microstructures

机译:多相微合金中碳钢的高周疲劳行为:铁素体-珠光体与回火马氏体组织的比较

获取原文
获取原文并翻译 | 示例
           

摘要

To improve toughness and fatigue strength, a mutiphase (ferrite (F)-bainite (B)-martensite (M)) microstructure was developed in a V-bearing medium carbon microallayed (MA) steel through a two-step cooling process that was followed by an annealing (two-step cooling and annealing (TSCA)) treatment. In the present paper, the high cycle fatigue (HCF) response determined in terms of the endurance limit, long crack fatigue threshold (DELTA K_(th)), crack closure and fatigue crack growth rate (FCGR) in a material that has a multiphase microstructure is presented and compared with those of the same material with a ferrite-pearlite (F-P) and a tempered martensite (T-M) microstructure obtained by air-cooling (AC) and quenching and tempering (Q&T), respectively. Long crack fatigue threshold (DELTA K_(th)) and crack closure were evaluated using a dynamic compliance (DYNACOMP) measurement technique. The fatigue limit of the F-B-M and the T-M microstructures (approx 400 MPa) was greater than that of the F-P microstructure (approx 340 MPa). At load ratios less than 0.5, the threshold for long crack growth was lower for the F-B-M microstructure compared with that of the F-P microstructure. This is attributed to the reduced roughness-induced crack closure (RICC) contribution to the threshold in the former multiphase microstructure. A quantitative analysis of the near-threshold fracture surfaces validated the above conclusion. Fatigue crack growth rate in the Paris regime was found to be independent of the microstructure but dependent on the load ratio.
机译:为了提高韧性和疲劳强度,在V轴承中碳微合金化(MA)钢中通过两步冷却工艺开发了多相(铁素体(F)-贝氏体(B)-马氏体(M))组织。通过退火(两步冷却和退火(TSCA))处理。在本文中,高循环疲劳(HCF)响应由耐久极限,长裂纹疲劳阈值(DEL K_(th)),裂纹闭合和疲劳裂纹扩展速率(FCGR)决定。给出了显微组织并将其与具有铁氧体-珠光体(FP)和回火马氏体(TM)的相同材料的显微组织进行了比较,分别通过空冷(AC)和淬火和回火(Q&T)获得。使用动态柔度(DYNACOMP)测量技术评估长裂纹疲劳阈值(DELTA K_(th))和裂纹闭合。 F-B-M和T-M微结构的疲劳极限(约400 MPa)大于F-P微结构的疲劳极限(约340 MPa)。当载荷比小于0.5时,与F-P微结构相比,F-B-M微结构的长裂纹扩展阈值较低。这归因于降低的粗糙度诱发的裂纹闭合(RICC)对前者多相微结构中阈值的贡献。对近阈值断裂面的定量分析证实了以上结论。发现巴黎地区的疲劳裂纹扩展速率与微观结构无关,但与载荷比有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号