...
首页> 外文期刊>Materials science & engineering >3D printed multi-scale scaffolds with ultrafine fibers for providing excellent biocompatibility
【24h】

3D printed multi-scale scaffolds with ultrafine fibers for providing excellent biocompatibility

机译:具有超细纤维的3D打印多尺度支架可提供出色的生物相容性

获取原文
获取原文并翻译 | 示例
           

摘要

It is a dilenuna that both strength and biocompatibility are requirements for an ideal scaffold in tissue engineering. The normal strategy is mixing or coating another material to improve the biocompatibility. Could we solve this dilemma by simply adjusting the scaffold structure? Here, a novel multi-scale scaffold was designed, in which thick fibers provide sufficient strength for mechanical support while the thin fibers provide a cell-favorable microenvironment to facilitate cell adhesion. Moreover, we developed a promising multi-scale direct writing system (MSDWS) for printing the multi-scale scaffolds. By switching the electrostatic field, scaffolds with fiber diameters from 3 pm to 600 pm were fabricated using one nozzle. Using this method, we proved that PCL scaffolds could also have excellent biocompatibility. BMSCs seeded on the scaffolds readily adhered to the thin fibers and maintained a high proliferation rate. Moreover, the cells bridged across the pores to form a cell sheet and gradually migrated to the thick fibers to cover the entire scaffold. We further combined the scaffolds with hydrogel for 3D cell culture and found that the fibers enhanced the strength and induced cell migration. We believe that the multi-scale scaffolds fabricated by an innovative 3D printing system have great potential for tissue engineering.
机译:强度和生物相容性都是组织工程中理想支架的要求,这是一个难题。通常的策略是混合或涂覆另一种材料以改善生物相容性。我们能否通过简单地调整支架结构来解决这个难题?在这里,设计了一种新颖的多尺度支架,其中粗纤维提供了足够的强度来进行机械支撑,而细纤维提供了有利于细胞的微环境以促进细胞粘附。此外,我们开发了一种有前途的多尺度直接书写系统(MSDWS),用于打印多尺度支架。通过切换静电场,使用一个喷嘴制造了纤维直径为3 pm至600 pm的支架。使用这种方法,我们证明了PCL支架也可以具有出色的生物相容性。接种在支架上的BMSC易于粘附在细纤维上并保持高增殖率。此外,细胞跨过孔桥接形成细胞片,并逐渐迁移至粗纤维以覆盖整个支架。我们进一步将支架与水凝胶结合用于3D细胞培养,发现该纤维增强了强度并诱导了细胞迁移。我们相信,由创新的3D打印系统制造的多尺度支架在组织工程方面具有巨大潜力。

著录项

  • 来源
    《Materials science & engineering》 |2020年第2期|110269.1-110269.9|共9页
  • 作者单位

    Zhejiang Univ Sch Mech Engn State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Zhejiang Peoples R China|Zhejiang Univ Sch Mech Engn Key Lab 3D Printing Proc & Equipment Zhejiang Pro Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ Childrens Hosp Sch Med Dept Paediat Orthopaed Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ Sch Mech Engn State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ Sch Mech Engn State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Zhejiang Peoples R China|Zhejiang Univ Sch Mech Engn Key Lab 3D Printing Proc & Equipment Zhejiang Pro Hangzhou 310027 Zhejiang Peoples R China|Zhengzhou Univ Key Lab Mat Proc & Mold Zhengzhou 450002 Henan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    3D printing; Multi-scale scaffolds; FDM printing; EHD printing; Tissue engineering;

    机译:3D打印多尺度脚手架;FDM打印;EHD打印;组织工程;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号