首页> 外文期刊>Materials Science & Engineering >Organic polymeric and small molecular electron acceptors for organic solar cells
【24h】

Organic polymeric and small molecular electron acceptors for organic solar cells

机译:用于有机太阳能电池的有机聚合物和小分子电子受体

获取原文
           

摘要

In organic solar cells (OSCs), the electron donor (D) and electron acceptor (A) blended active layer is the most crucial component for governing the power conversion efficiency (PCE). Various efficient donor materials with wide structural variations have been developed to couple with high-electron mobility fullerene-based acceptors, giving PCEs beyond 12%. However, fullerene-embedded OSCs encounter great challenges of low flexibility for structural modifications, poor absorption and blend morphological stability. The demand for alternative acceptors drives current OSC research towards non-fullerene acceptors (NFAs). Tailor-made NFAs of polymer or small molecule (SM) can typically exhibit tunable optical and electrochemical properties, high solubility, air stability, and favorable intermolecular interactions leading to compact packing and good nano-phase segregation in the active blend. In this review, we systematically depict the effects of molecular structures on the physical properties and device performances. The promising/most popular cores and general molecular design strategies of NFAs are outlined. The polymeric and SM NFAs were classified into several sub-groups based on their structural features, and in every sub-group, the structural evolution, current status, the champion case as well as the future challenges were highlighted and discussed. For polymeric NFAs, naphtalene diimide (NDI) and perylene diimide (PDI) are most promising and widely explored due to their easy synthesis, high electron affinity and mobility, leading to promising PCE when NDI and PDI units are conjugated with various electron-rich/deficient aromatics. Various electron-deficient core-based polymeric NFAs were also employed. Aromatic diimides (NDI and PDI) were also widely employed as the central core or terminal unit for SM NFAs. In particular, PDI was interested in electron deficient core, and their monomers, dimers, and trimers gave various degrees of success. PDI trimeric NFA showed superior PCE (∼9.3%) because of its twisted 3D or fused geometry capable of interlocking the polymer donor allows optimum molecular packing, morphology and, therefore, efficient charge separation and transport. The excellent photochemical stability, strong absorption and synthetic flexibility of diketopyrrolopyrrole (DPP) produced promising SM NFAs. The rigid and co-planar indacenodithiophene (IDT) cores bearing various electron-deficient terminal groups were extensively explored, and the structural engineering on both the core and side chain groups together with post-treatments produced the highest PCE (∼13.2%). These results conclude that NFAs possess the better possibility for tuning absorption profile, matched energy levels and optimal D/A nano-morphology for delivering promising PCEs. We highlighted the structure-property-performance relationships and future challenges, and hope this article can trigger new ideas for designing more promising NFAs.
机译:在有机太阳能电池(OSC)中,电子给体(D)和电子受体(A)混合的活性层是控制功率转换效率(PCE)的最关键组件。已经开发出各种具有广泛结构变化的有效供体材料,以与高电子迁移率富勒烯基受体结合,使PCE超过12%。然而,富勒烯嵌入的OSC面临着巨大的挑战,即结构修饰的柔韧性低,吸收差和混合物形态稳定性差。对替代受体的需求将当前的OSC研究推向非富勒烯受体(NFA)。为聚合物或小分子(SM)量身定制的NFA通常可显示出可调的光学和电化学特性,高溶解度,空气稳定性以及有利的分子间相互作用,从而导致活性共混物中的紧密堆积和良好的纳米相偏析。在这篇综述中,我们系统地描述了分子结构对物理性质和器件性能的影响。概述了NFA的有前途/最受欢迎的核心和一般的分子设计策略。聚合物和SM NFAs根据其结构特征分为几个子组,并且在每个子组中,突出并讨论了结构演变,当前状态,冠军案例以及未来的挑战。对于聚合NFA,由于萘二甲酰亚胺(NDI)和per二酰亚胺(PDI)易于合成,具有较高的电子亲和力和迁移率,因此最有前途且得到了广泛的探索,当NDI和PDI单元与各种富电子/芳香剂不足。还使用了各种基于缺电子核的聚合物NFA。芳香族二酰亚胺(NDI和PDI)也被广泛用作SM NFA的中央核心或终端单元。特别是,PDI对缺电子的核很感兴趣,它们的单体,二聚体和三聚体在各个方面都取得了成功。 PDI三聚NFA显示出优异的PCE(〜9.3%),这是因为其扭曲的3D或融合的几何形状能够互锁聚合物供体,从而实现了最佳的分子堆积,形态,从而实现了有效的电荷分离和运输。二酮吡咯并吡咯(DPP)的出色的光化学稳定性,强吸收性和合成柔韧性产生了有前途的SM NFA。广泛探索了带有各种缺电子端基的刚性和共平面的茚并二噻吩(IDT)核,并且在核和侧链基团上的结构工程以及后处理产生了最高的PCE(〜13.2%)。这些结果表明,NFA具有更好的可能性来调节吸收曲线,匹配的能级和最佳D / A纳米形态,以提供有前途的PCE。我们强调了结构,性能和性能之间的关系以及未来的挑战,并希望本文能够为设计更有前景的NFA引发新的思路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号