...
首页> 外文期刊>Mechanical systems and signal processing >On mechanical damping of cantilever beam-based electromagnetic resonators
【24h】

On mechanical damping of cantilever beam-based electromagnetic resonators

机译:关于悬臂梁式电磁谐振器的机械阻尼

获取原文
获取原文并翻译 | 示例
           

摘要

Often when optimising a vibration energy harvester, the mechanical damping is given little significance and is usually assumed to be a constant. This paper analyses the importance of mechanical damping variation in modelling the behaviour of a cantilever beam-based electromagnetic resonator. It is shown that for beam volumes above 100 mm(3), material damping dominates thermoelastic and air damping, hence becoming the major contributor towards the mechanical damping. A novel method is proposed to define material damping in terms of the maximum critically damped stress at resonance. The new method is shown to be simpler and more accurate than previous methods. Using the developed governing equations, the conditions of optimum load resistance are derived for two particular cases. A comparison is made between the mechanical damping model and the constant mechanical damping assumption in terms of maximum power output. Different trends were noted between the two compared methods, suggesting that the constant mechanical damping assumption can lead to large errors in power prediction. Further analysis describes the existence of an optimum mass ratio for electromagnetic resonators operating under a low magnetisation parameter. Lastly, this paper shows that different frequency tuning methods are preferable under different operating conditions. (C) 2018 Elsevier Ltd. All rights reserved.
机译:通常,在优化振动能量收集器时,机械阻尼的意义不大,通常被认为是恒定的。本文分析了在基于悬臂梁的电磁谐振器行为建模中机械阻尼变化的重要性。结果表明,对于大于100 mm(3)的梁,材料阻尼在热弹性和空气阻尼中占主导地位,因此成为机械阻尼的主要贡献者。提出了一种新的方法来根据共振时的最大临界阻尼应力来定义材料阻尼。事实证明,新方法比以前的方法更简单,更准确。使用开发的控制方程式,可以得出针对两种特殊情况的最佳负载电阻条件。在最大功率输出方面,对机械阻尼模型和恒定机械阻尼假设进行了比较。两种比较方法之间注意到了不同的趋势,这表明恒定的机械阻尼假设可能导致功率预测中的大误差。进一步的分析描述了在低磁化参数下工作的电磁谐振器的最佳质量比的存在。最后,本文表明,在不同的工作条件下,最好采用不同的频率调谐方法。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号