...
首页> 外文期刊>Mechanical systems and signal processing >Non-simultaneous real-time hybrid simulation of a numerical and experimental mechanical system with moderate nonlinearities via iterative coupling based on Frequency Response Functions
【24h】

Non-simultaneous real-time hybrid simulation of a numerical and experimental mechanical system with moderate nonlinearities via iterative coupling based on Frequency Response Functions

机译:基于频率响应函数的迭代耦合,具有中等非线性的数值和实验机械系统的非同时实时混合模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The coupled simulation of numerical and real subsystems is sometimes called 'hybrid sub-structuring', 'hardware in the loop (HIL)', 'cyberphysical simulation', or 'hybrid simulation', and is an active field of research. In this publication, an iterative algorithm for a coupled simulation of a numerical subsystem and a real (experimental) one is presented. The term 'iterative' means that the subsystems are not computed or tested simultaneously but in loops one after the other. After each loop run, new control signals are computed so that the deviation of the coupling forces and displacements becomes smaller with each iteration. If the coupling quantities are equal, then the systems are coupled in a mechanical sense because of the cutting force principle. The proposed method works for quasi-static (slow speed) and dynamically reacting systems as well as for subsystems with moderate nonlinearities. The iterative character has several consequences: (1) No controllers are necessary. (2) The speed of the data exchange is not critical. (3) The method can only be applied to components whose properties do not change during the simulation (e.g. due to damage). Privacy between the two domains is guaranteed, as no explicit mathematical models in the sense of Finite Element (FE) structures or the like, but only frequency response functions, have to be exchanged. A possible application scenario could look as follows: An original equipment manufacturer (OEM) provides a web interface to a complex overall simulation model. A (geographically distant) supplier starts an iterative co-simulation with a somehow modified component (e.g. a bearing). Both sides can thus estimate the impact on the overall system. After explaining the theory, two examples are presented. The first concerns the coupled simulation of two pure numerical systems. In the second example, mixed numerical and experimental subsystems are coupled. Hence, a simple wheel suspension is considered, where the shock absorber is the real part on a test bench.
机译:数值和实际子系统的耦合模拟有时被称为“混合子结构化”,“环路(HIL)”,“媒介芯片仿真”或“混合模拟”,并且是一个活跃的研究领域。在本出版物中,呈现了一种耦合数值子系统和实验(实验)耦合模拟的迭代算法。术语“迭代”意味着子系统不是同时计算或测试,而是在另一个之后的循环中进行测试。在每个环路运行之后,计算新的控制信号,使得耦合力和位移的偏差随着每次迭代而变小。如果耦合量相等,则由于切割力原理,系统以机械意义耦合。所提出的方法适用于准静态(慢速)和动态反应系统以及具有中等非线性的子系统。迭代字符有几个后果:(1)没有必要的控制器。 (2)数据交换的速度并不重要。 (3)该方法只能应用于在模拟期间不改变的组件(例如,由于损坏)。保证了两个域之间的隐私,因为有限元(FE)结构等没有明确的数学模型,但仅需要交换频率响应函数。可能的应用方案可能如下所示:原始设备制造商(OEM)为复杂的整体仿真模型提供了一个Web界面。 A(地理上遥远的)供应商使用以某种方式修改的组件(例如轴承)开始迭代共模。因此,双方都可以估计对整个系统的影响。解释理论后,提出了两个示例。首先涉及两个纯数值系统的耦合模拟。在第二个例子中,混合数值和实验子系统耦合。因此,考虑了一个简单的车轮悬架,其中减震器是测试台上的真实部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号