...
首页> 外文期刊>Microprocessors and microsystems >Virtual prototyping of pressure driven microfluidic systems with SystemC-AMS extensions
【24h】

Virtual prototyping of pressure driven microfluidic systems with SystemC-AMS extensions

机译:带有SystemC-AMS扩展的压力驱动微流体系统的虚拟原型

获取原文
获取原文并翻译 | 示例
           

摘要

The design of "Lab on a Chip" microfluidic devices is, typically, preceded by a long and costly period of prototyping stages in which the system is gradually refined by an iterative process, involving the manufacturing of a physical prototype and the making of a lot of laboratory experiments. In this scenario, a virtual prototyping framework which allows the emulation of the behavior of the complete system is greatly welcome. This paper presents such a framework and details a virtual prototyping methodology able to soundly handle microfluidic behavior based on SystemC-AMS extensions. The use of these extensions will permit the communication of the developed microfluidic models with external digital or mixed signal devices. This allows the emulation of the whole Lab on a Chip system as it usually includes a digital control and a mixed-signal reading environment. Moreover, as SystemC-AMS is also being extended to cover other physical domains within the CATRENE CA701 project, interactions with these domains will be possible, for example, with electromechanical or optical parts, should they be part of the system. The presented extensions that can manage the modeling of a micro-fluidic system are detailed. Two approaches have been selected: to model the fluid analytically based on the Poiseuille flow theory and to model the fluid numerically following the SPH (Smoothed Particle Hydrodynamics) approach. Both modeling techniques are, by now, encapsulated under the TDF (Timed Data Flow) MoC (Model of Computation) of SystemC-AMS. (C) 2015 Elsevier B.V. All rights reserved.
机译:通常,在“芯片实验室”微流控设备的设计之前,需要较长且昂贵的原型设计阶段,在该阶段中,需要通过迭代过程逐步完善系统,包括制造物理原型并进行大量制造实验室实验。在这种情况下,非常欢迎一个虚拟原型框架,该框架允许模拟整个系统的行为。本文提出了这样一个框架,并详细介绍了一种虚拟原型方法,该方法能够基于SystemC-AMS扩展正确处理微流体行为。这些扩展的使用将允许开发的微流体模型与外部数字或混合信号设备进行通信。由于它通常包括数字控制和混合信号读取环境,因此可以模拟整个芯片实验室。此外,由于SystemC-AMS也已扩展到涵盖CATRENE CA701项目中的其他物理领域,因此,如果它们是系统的一部分,则与这些领域的交互将是可能的,例如,与机电或光学部件的交互。详细介绍了可以管理微流体系统建模的扩展。选择了两种方法:基于Poiseuille流动理论对流体进行分析建模,以及根据SPH(平滑粒子流体动力学)方法对流体进行数值建模。到目前为止,这两种建模技术都封装在SystemC-AMS的TDF(定时数据流)MoC(计算模型)下。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号