首页> 外文期刊>Nature >Reverse weathering as a long-term stabilizer of marine pH and planetary climate
【24h】

Reverse weathering as a long-term stabilizer of marine pH and planetary climate

机译:逆风化是海洋pH和行星气候的长期稳定剂

获取原文
获取原文并翻译 | 示例
           

摘要

For the first four billion years of Earth's history, climate was marked by apparent stability and warmth despite the Sun having lower luminosity(1). Proposed mechanisms for maintaining an elevated partial pressure of carbon dioxide in the atmosphere (p(CO2)) centre on a reduction in the weatherability of Earth's crust and therefore in the efficiency of carbon dioxide removal from the atmosphere(2). However, the effectiveness of these mechanisms remains debated(2,3). Here we use a global carbon cycle model to explore the evolution of processes that govern marine pH, a factor that regulates the partitioning of carbon between the ocean and the atmosphere. We find that elevated rates of ` reverse weathering'-that is, the consumption of alkalinity and generation of acidity during marine authigenic clay formation(4-7)-enhanced the retention of carbon within the ocean-atmosphere system, leading to an elevated p(CO2) baseline. Although this process is dampened by sluggish kinetics today, we propose that more prolific rates of reverse weathering would have persisted under the pervasively silica-rich conditions(8,9) that dominated Earth's early oceans. This distinct ocean and coupled carbon-silicon cycle state would have successfully maintained the equable and ice-free environment that characterized most of the Precambrian period. Further, we propose that during this time, the establishment of a strong negative feedback between marine pH and authigenic clay formation would have also enhanced climate stability by mitigating large swings in p(CO2)-a critical component of Earth's natural thermostat that would have been dominant for most of Earth's history. We speculate that the late ecological rise of siliceous organisms8 and a resulting decline in silica-rich conditions dampened the reverse weathering buffer, destabilizing Earth's climate system and lowering baseline p(CO2).
机译:在地球历史的前40亿年中,尽管太阳的光度较低,但气候仍具有明显的稳定性和温暖性(1)。维持大气中二氧化碳分压(p(CO2))的建议机制集中于降低地壳的耐候性,因此降低了从大气中去除二氧化碳的效率(2)。但是,这些机制的有效性尚有争议(2,3)。在这里,我们使用全球碳循环模型来探索控制海洋pH值的过程的演变,pH是调节海洋与大气之间碳分配的一个因素。我们发现升高的``逆向风化''速率-即海洋自生粘土形成过程中碱度的消耗和酸度的产生(4-7)-增强了碳在海洋-大气系统中的保留,导致p升高(CO2)基准。尽管今天这个过程因动力学的不景气而受到抑制,但我们认为,在普遍存在的富含二氧化硅的条件下(8,9),逆向风化的发生率会继续保持较高水平,而这种条件主导着地球的早期海洋。这种独特的海洋和碳硅循环的耦合状态将成功地维持了特征,即大部分前寒武纪时期均无冰的环境。此外,我们建议在此期间,通过减轻p(CO2)的大幅度波动来建立海洋pH和自生粘土形成之间的强烈负反馈,也可以增强气候稳定性,而p(CO2)是地球自然温度调节器的重要组成部分。在地球的大部分历史中占主导地位。我们推测硅质生物的晚期生态上升8和随之而来的富硅条件的下降抑制了逆向风化缓冲层,破坏了地球的气候系统并降低了基准p(CO2)。

著录项

  • 来源
    《Nature》 |2018年第7719期|471-475|共5页
  • 作者单位

    Yale Univ, Dept Geol & Geophys, New Haven, CT 06520 USA;

    Yale Univ, Dept Geol & Geophys, New Haven, CT 06520 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号