首页> 外文期刊>Nature >Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease
【24h】

Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease

机译:磷脂酶D3基因中罕见的编码变异会增加患阿尔茨海默氏病的风险

获取原文
获取原文并翻译 | 示例
           

摘要

β-淀粉质前体蛋白、presenilin 1和presenilin 2中引起阿尔茨海默氏症的突变的识别,使我们对这种疾病的病理生物学有了更好的认识。预计还会发现进一步的突变,但识别这种变异体一直具有挑战性。本文作者采用外显子组测序方法来识别对晚发病的阿尔茨海默氏症有很大影响的低频率编码变异体。他们报告了PLD3基因中的几个编码变异体(编码磷脂酶D3),这些变异体至少将患病风险增加两倍。PLD3也许在β-淀粉质的处理中起一定作用,并且还具有作为一个新的治疗目标的潜力。%Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpres-sion of PLD3 leads to a significant decrease in intracellular amyloid-P precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42-and 40-residue isoforms of the amyloid-P peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.
机译:β-淀粉质前体蛋白、presenilin 1和presenilin 2中引起阿尔茨海默氏症的突变的识别,使我们对这种疾病的病理生物学有了更好的认识。预计还会发现进一步的突变,但识别这种变异体一直具有挑战性。本文作者采用外显子组测序方法来识别对晚发病的阿尔茨海默氏症有很大影响的低频率编码变异体。他们报告了PLD3基因中的几个编码变异体(编码磷脂酶D3),这些变异体至少将患病风险增加两倍。PLD3也许在β-淀粉质的处理中起一定作用,并且还具有作为一个新的治疗目标的潜力。%Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpres-sion of PLD3 leads to a significant decrease in intracellular amyloid-P precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42-and 40-residue isoforms of the amyloid-P peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.

著录项

  • 来源
    《Nature》 |2014年第7484期|550-554A3|共6页
  • 作者单位

    Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110. USA,Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University 425 South Euclid Avenue, St. Louis, Missouri 63110, USA;

    Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110. USA,Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University 425 South Euclid Avenue, St. Louis, Missouri 63110, USA;

    Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110. USA;

    Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110. SA;

    Department of Psychiatry, Washington University, 425 South Euclid Avenue, St. Louis, Missouri 63110. USA;

    et al;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号