首页> 外文期刊>Nature >Minimal-excitation states for electron quantum optics using levitons
【24h】

Minimal-excitation states for electron quantum optics using levitons

机译:使用leviton的电子量子光学的最小激发态

获取原文
获取原文并翻译 | 示例
           

摘要

The on-demand gene0ration of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong-Ou-Mandel noise correlations. The latter, obtained by colliding synchronized levitons on a beam splitter, exemplifies the potential use of levitons for quantum information: using linear electron quantum optics9 in ballistic conductors, it is possible to imagine flying-qubit operation in which the Fermi statistics are exploited to entangle synchronized electrons emitted by distinct sources. Compared with electron sources based on quantum dots, the generation of levitons does not require delicate nanolithography, considerably simplifying the circuitry for scalability. Levitons are not limited to carrying a single charge, and so in a broader context n-particle levitons could find application in the study of full electron counting statistics). But they can also carry a fraction of charge if they are implemented in Luttinger liquids or in fractional quantum Hall edge channels; this allows the study of Abelian and non-Abelian quasiparticles in the time domain. Finally, the generation technique could be applied to cold atomic gases, leading to the possibility of atomic levitons.%纯量子激发态的按需生成(对于量子系统的操 作很重要)对费米子来说尤为困难。这是因为 扰动会导致粒子激发和空穴激发的复杂叠加。 然而,Leonid Levitov在近20年前就预测,应 有可能生成一个最小激发态,即只有一个粒 子、没有空穴的一个准粒子。作者报告了这种 准粒子(他们将其称为"levitons")在一个电子 系统中的按需生成。他们设想,levitons将在 量子信息和基础研究中找到应用。
机译:纯量子激发的按需生成对于量子系统的操作很重要,但是对于费米子系统则特别困难。这是因为任何扰动都会影响费米能量以下的所有状态,从而导致粒子和空穴激发的复杂叠加。但是,据预测,将近20年前,具有量化通量的洛伦兹时间相关势能仅产生一个粒子而没有空穴,从而产生最小的激发。在这里,我们报告说,可以通过在触点上施加电压脉冲,按需在导体中生成此类准粒子(以下称左旋子)。用电子分束器对激励进行分区会产生电流噪声,我们将其用于测量其数量。对于洛伦兹脉冲,观察到最小激发态,而对于其他脉冲形状,空穴的贡献很大。在散粒噪声光谱的能量域中以及在时域电子洪---曼德尔噪声相关性中提供了对卵白蛋白的进一步鉴定。后者是通过将同步的光子碰撞在分束器上而获得的,它例证了光子在量子信息中的潜在用途:在弹道导体中使用线性电子量子光学9,可以想象利用费米统计量进行纠缠的飞行量子位操作由不同源发出的同步电子。与基于量子点的电子源相比,悬浮素的产生不需要精细的纳米光刻,从而大大简化了可扩展性电路。悬浮素不限于携带单电荷,因此在更广泛的范围内,n粒子悬浮素可用于全电子计数统计的研究。但是,如果在Luttinger液体中或在分数量子霍尔边缘通道中实施,它们也可以携带一部分电荷。这使得可以在时域中研究Abelian和非Abelian准粒子。最后,该生成技术可以应用于冷原子气体,从而导致原子悬浮的可能性。%纯量子激发态的按需生成(对于量子系统的操作很重要)对费米子来说尤为困难。这是然而,Leonid Levitov在近20年前就预测,应有可能生成一个最小激发态,即只有一个粒子,没有任何的一个准粒子。报告了这种准粒子(他们将其称为“ levitons”)在一个电子系统中的按需生成。他们预测,levitons将在量子信息和基础研究中找到应用。

著录项

  • 来源
    《Nature》 |2013年第7473期|659-663a1|共6页
  • 作者单位

    Nanoelectronics Group, Servicede Physique de I Etat Condense, IRAMIS/DSM (CNRURA24b4),CEASaclay, F-91191 Gif-sur-Yvette, France;

    Nanoelectronics Group, Servicede Physique de I Etat Condense, IRAMIS/DSM (CNRURA24b4),CEASaclay, F-91191 Gif-sur-Yvette, France;

    Nanoelectronics Group, Servicede Physique de I Etat Condense, IRAMIS/DSM (CNRURA24b4),CEASaclay, F-91191 Gif-sur-Yvette, France;

    Nanoelectronics Group, Servicede Physique de I Etat Condense, IRAMIS/DSM (CNRURA24b4),CEASaclay, F-91191 Gif-sur-Yvette, France;

    CNRS/Univ Paris Diderot (Sorbonne Paris Cite), Laboratoire de Photonique et de Nanostructures (LPN), route de Nozay, 91460 Marcoussis, France;

    CNRS/Univ Paris Diderot (Sorbonne Paris Cite), Laboratoire de Photonique et de Nanostructures (LPN), route de Nozay, 91460 Marcoussis, France;

    Laboratory for Solid State Physics, ETH Zurich, CH-8093 Zurich, Switzerland;

    Nanoelectronics Group, Servicede Physique de I Etat Condense, IRAMIS/DSM (CNRURA24b4),CEASaclay, F-91191 Gif-sur-Yvette, France;

    Nanoelectronics Group, Servicede Physique de I Etat Condense, IRAMIS/DSM (CNRURA24b4),CEASaclay, F-91191 Gif-sur-Yvette, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号