首页> 外文期刊>Nature >Revealing the quantum regime in tunnelling plasmonics
【24h】

Revealing the quantum regime in tunnelling plasmonics

机译:揭示隧道等离子体激元中的量子态

获取原文
获取原文并翻译 | 示例
           

摘要

When two metal nanostructures are placed nanometres apart, their optically driven free electrons couple electrically across the gap. The resulting plasmons have enhanced optical fields of a specific colour tightly confined inside the gap. Many emerging nanophotonic technologies depend on the careful control of this plasmonic coupling, including optical nanoantennas for high-sensitivity chemical and biological sensors, nanoscale control of active devices, and improved photovoltaic devices. But for subnanometre gaps, coherent quantum tunnelling becomes possible and the system enters a regime of extreme non-locality in which previous classical treatments fail. Electron correlations across the gap that are driven by quantum tunnelling require a new description of non-local transport, which is crucial in nanoscale optoelectronics and single-molecule electronics. Here, by simultaneously measuring both the electrical and optical properties of two gold nanostructures with controllable subnanometre separation, we reveal the quantum regime of tunnelling plasmonics in unprecedented detail. All observed phenomena are in good agreement with recent quantum-based models of plasmonic systems15, which eliminate the singularities predicted by classical theories. These findings imply that tunnelling establishes a quantum limit for plasmonic field confinement of about 10~(-8)λ~3 for visible light (of wavelength λ). Our work thus prompts new theoretical and experimental investigations into quantum-domain plasmonic systems, and will affect the future of nanoplasmonic device engineering and nanoscale photochemistry.
机译:当两个金属纳米结构相隔纳米放置时,它们的光驱动自由电子跨间隙电耦合。所得的等离子体激元具有紧密地限制在​​间隙内部的特定颜色的增强的光学场。许多新兴的纳米光子技术依赖于这种等离子体耦合的仔细控制,包括用于高灵敏度化学和生物传感器的光学纳米天线,有源器件的纳米级控制以及改进的光伏器件。但是对于亚纳米级的间隙,相干量子隧穿成为可能,并且系统进入极端非局域性的状态,而先前的经典处理方法则失败了。由量子隧穿驱动的跨越间隙的电子相关性需要对非局部传输进行新的描述,这在纳米级光电子学和单分子电子学中至关重要。在这里,通过用可控的亚纳米级分离同时测量两个金纳米结构的电学性质和光学性质,我们以前所未有的细节揭示了隧穿等离子体的量子态。所有观察到的现象都与最近基于等离子系统的基于量子模型的模型相吻合,后者消除了经典理论所预测的奇异性。这些发现暗示隧道效应为可见光(波长为λ)建立了约10〜(-8)λ〜3的等离子体场限制量子极限。因此,我们的工作推动了对量子域等离子体系统的新理论和实验研究,并将影响纳米等离子体设备工程和纳米级光化学的未来。

著录项

  • 来源
    《Nature》 |2012年第7425期|p.574-577|共4页
  • 作者单位

    Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge CB3 OHE, UK;

    Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge CB3 OHE, UK;

    Material Physics Center CSIC-UPV/EHU and Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 5,20018 Donostia-San Sebastian, Spain;

    Material Physics Center CSIC-UPV/EHU and Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 5,20018 Donostia-San Sebastian, Spain,lnstitut des Sciences Moleculaires d'Orsay- UMR 8214, CNRS-Universite Paris Sud, Batiment 351,91405 Orsay Cedex, France;

    Material Physics Center CSIC-UPV/EHU and Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 5,20018 Donostia-San Sebastian, Spain;

    Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, Cambridge CB3 OHE, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号