首页> 外文期刊>Nature >Homologue structure of the SLAC1 anion channel for closing stomata in leaves
【24h】

Homologue structure of the SLAC1 anion channel for closing stomata in leaves

机译:用于关闭叶片气孔的SLAC1阴离子通道的同源结构

获取原文
获取原文并翻译 | 示例
           

摘要

The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus inftuenzae) of SLAC1 at 1.20 A resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.
机译:植物SLAC1阴离子通道控制植物气孔中限定孔径的保卫细胞中的膨胀压力,从而响应干旱或二氧化碳含量高等环境信号来调节水蒸气和光合气体的交换。在这里,我们确定SLAC1的细菌同源物(嗜血嗜血杆菌)的晶体结构在1.20 A的分辨率,并使用结构启发式诱变来分析SLAC1通道的电导特性。 SLAC1是由准对称亚基组成的对称三聚体,每个亚基均具有十个跨膜螺旋,这些跨膜螺旋由螺旋发夹对排列而成,形成一个中心的五螺旋跨膜孔,该孔被一个极其保守的苯丙氨酸残基封闭。构象特征表明通过激酶活化来控制门控的机制,并且孔的静电特征与电生理学特征相结合表明,不同阴离子之间的选择性在很大程度上是离子脱水的能量成本的函数。

著录项

  • 来源
    《Nature》 |2010年第7319期|p.1074-1080|共7页
  • 作者单位

    Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA,NYCOMPS, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA;

    rnDepartment of Neuroscience, Columbia University, New York, New York 10032, USA;

    rnNYCOMPS, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA,Department of Computer Science and Institute for Advanced Study, Technical University of Munich, D-85748 Munich, Germany;

    rnNYCOMPS, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA;

    rnNYCOMPS, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA;

    rnNYCOMPS, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA;

    rnDepartment of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA,NYCOMPS, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA,Department of Computer Science and Institute for Advanced Study, Technical University of Munich, D-85748 Munich, Germany;

    rnNYCOMPS, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA;

    rnDepartment of Neuroscience, Columbia University, New York, New York 10032, USA,Department of Pharmacology, Columbia University, New York, New York 10032, USA,Howard Hughes Medical Institute, Columbia University, New York, New York 10032, USA;

    rnDepartment of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA,NYCOMPS, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, USA,Howard Hughes Medical Institute, Columbia University, New York, New York 10032, USA,Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号