首页> 外文期刊>Nature >Distinct Sensory Representations Of Wind And Near-field Sound In The Drosophila Brain
【24h】

Distinct Sensory Representations Of Wind And Near-field Sound In The Drosophila Brain

机译:果蝇大脑中风和近场声音的独特感官表现

获取原文
获取原文并翻译 | 示例
           

摘要

Behavioural responses to wind are thought to have a critical role in controlling the dispersal and population genetics of wild Drosophila species, as well as their navigation in flight, but their underlying neurobiological basis is unknown. We show that Drosophila melanogaster, like wild-caught Drosophila strains, exhibits robust wind-induced suppression of locomotion in response to air currents delivered at speeds normally encountered in nature. Here we identify wind-sensitive neurons in Johnston's organ, an antennal mechanosensory structure previously implicated in near-field sound detection (reviewed in refs 5 and 6). Using enhancer trap lines targeted to different subsets of Johnston's organ neurons, and a genetically encoded calcium indicator, we show that wind and near-field sound (courtship song) activate distinct populations of Johnston's organ neurons, which project to different regions of the antennal and mechanosensory motor centre in the central brain. Selective genetic ablation of wind-sensitive Johnston's organ neurons in the antenna abolishes wind-induced suppression of locomotion behaviour, without impairing hearing. Moreover, different neuronal subsets within the wind-sensitive population respond to different directions of arista deflection caused by air flow and project to different regions of the antennal and mechanosensory motor centre, providing a rudimentary map of wind direction in the brain. Importantly, sound- and wind-sensitive Johnston's organ neurons exhibit different intrinsic response properties: the former are pha-sically activated by small, bi-directional, displacements of the aristae, whereas the latter are tonically activated by unidirectional, static deflections of larger magnitude. These different intrinsic properties are well suited to the detection of oscillatory pulses of near-field sound and laminar air flow, respectively. These data identify wind-sensitive neurons in Johnston's organ, a structure that has been primarily associated with hearing, and reveal how the brain can distinguish different types of air particle movements using a common sensory organ.
机译:人们对风的行为响应在控制野生果蝇物种的扩散和种群遗传学以及它们在飞行中的航行中具有关键作用,但其潜在的神经生物学基础尚不清楚。我们显示果蝇果蝇,像野生果蝇菌株,表现出强大的风诱导的运动对响应以自然界中通常遇到的速度传递的气流的运动的抑制。在这里,我们确定了约翰斯顿器官中的风敏感神经元,这是一种与近场声音检测相关的触角机械感官结构(参见参考文献5和6)。使用针对约翰斯顿的器官神经元的不同子集的增强子陷阱线和遗传编码的钙指示剂,我们显示风和近场声(陪练歌曲)激活了约翰斯顿的器官神经元的不同种群,这些种群投射到触角和中央大脑的机械感觉运动中心。天线中的风敏约翰斯顿器官神经元的选择性遗传消融消除了风诱导的运动行为抑制,而不会损害听力。此外,对风敏感的人群中不同的神经元子集会响应由气流引起的阿里斯塔偏转的不同方向,并投射到触角和机械感觉运动中心的不同区域,从而提供了大脑中风向的基本地图。重要的是,对声音和风敏感的约翰斯顿氏器官神经元表现出不同的内在响应特性:前者通过小而双向的腕突位移而被相位激活,而后者则通过较大幅度的单向静态偏转而被声调激活。 。这些不同的固有特性非常适合分别检测近场声音和层流气流的振荡脉冲。这些数据确定了约翰斯顿器官中的风敏感神经元(该结构主要与听力有关),并揭示了大脑如何利用普通的感觉器官来区分不同类型的空气粒子运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号