首页> 外文期刊>Nature >Complete quantum control of a single quantum dot spin using ultrafast optical pulses
【24h】

Complete quantum control of a single quantum dot spin using ultrafast optical pulses

机译:使用超快光脉冲对单个量子点自旋进行完整的量子控制

获取原文
获取原文并翻译 | 示例
           

摘要

A basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. For qubits based on electron spin, a universal single-qubit gate is realized by a rotation of the spin by any angle about an arbitrary axis. Driven, coherent Rabi oscillations between two spin states can be used to demonstrate control of the rotation angle. Ramsey interference, produced by two coherent spin rotations separated by a variable time delay, demonstrates control over the axis of rotation. Full quantum control of an electron spin in a quantum dot has previously been demonstrated using resonant radio-frequency pulses that require many spin precession periods. However, optical manipulation of the spin allows quantum control on a picosecond or femtosecond timescale, permitting an arbitrary rotation to be completed within one spin precession period. Recent work in optical single-spin control has demonstrated the initialization of a spin state in a quantum dot, as well as the ultrafast manipulation of coherence in a largely unpolarized single-spin state. Here we demonstrate complete coherent control over an initialized electron spin state in a quantum dot using picosecond optical pulses. First we vary the intensity of a single optical pulse to observe over six Rabi oscillations between the two spin states; then we apply two sequential pulses to observe high-contrast Ramsey interference. Such a two-pulse sequence realizes an arbitrary single-qubit gate completed on a picosecond timescale. Along with the spin initialization and final pro jective measurement of the spin state, these results demonstrate a complete set of all-optical single-qubit operations.
机译:量子信息处理系统的基本要求是能够完全控制单个量子位的状态。对于基于电子自旋的量子位,通用的单量子位门是通过自旋围绕任意轴旋转任意角度来实现的。在两个自旋状态之间的被驱动的,相干的拉比振荡可以用来证明旋转角的控制。拉姆齐干涉是由两个相干的自旋旋转(由可变的时间延迟分隔)产生的,它证明了对旋转轴的控制。先前已经使用需要许多自旋进动周期的共振射频脉冲证明了对量子点中电子自旋的完全量子控制。但是,自旋的光学操纵允许在皮秒或飞秒的时间尺度上进行量子控制,从而允许在一个自旋进动周期内完成任意旋转。光学单旋控制的最新工作已证明了量子点中自旋状态的初始化,以及在很大程度上未极化的单旋状态中超快的相干性控制。在这里,我们演示了使用皮秒光脉冲对量子点中初始化的电子自旋状态进行完全相干控制。首先,我们改变单个光脉冲的强度,以观察两个自旋状态之间的六个Rabi振荡;然后我们施加两个连续脉冲来观察高对比度的拉姆齐干扰。这样的两脉冲序列实现了在皮秒时间尺度上完成的任意单量子位门。与自旋初始化和自旋状态的最终预测测量一起,这些结果证明了一套完整的全光单量子位运算。

著录项

  • 来源
    《Nature》 |2008年第7219期|p.218-221|共4页
  • 作者单位

    E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自然科学总论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号