首页> 外文期刊>Nature >Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well
【24h】

Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well

机译:使用外延量子阱对半导体纳米晶体进行能量转移泵浦

获取原文
获取原文并翻译 | 示例
           

摘要

As a result of quantum-confinement effects, the emission colour of semiconductor nanocrystals can be modified dramatically by simply changing their size(1,2). Such spectral tunability, together with large photoluminescence quantum yields and high photostability, make nanocrystals attractive for use in a variety of light-emitting technologies - for example, displays, fluorescence tagging(3), solid-state lighting and lasers(4). An important limitation for such applications, however, is the difficulty of achieving electrical pumping, largely due to the presence of an insulating organic capping layer on the nanocrystals. Here, we describe an approach for indirect injection of electron - hole pairs ( the electron - hole radiative recombination gives rise to light emission) into nanocrystals by non-contact, non-radiative energy transfer from a proximal quantum well that can in principle be pumped either electrically or optically. Our theoretical and experimental results indicate that this transfer is fast enough to compete with electron - hole recombination in the quantum well, and results in greater than 50 per cent energy-transfer efficiencies in the tested structures. Furthermore, the measured energy-transfer rates are sufficiently large to provide pumping in the stimulated emission regime, indicating the feasibility of nanocrystal-based optical amplifiers and lasers based on this approach.
机译:由于量子限制效应,只需改变其尺寸即可极大地改变半导体纳米晶体的发射颜色(1,2)。这种光谱可调谐性,加上大的光致发光量子产率和高的光稳定性,使得纳米晶体吸引了多种发光技术,例如显示器,荧光标记(3),固态照明和激光器(4)。然而,对于这种应用的重要限制是实现电泵的困难,这主要是由于在纳米晶体上存在绝缘有机覆盖层。在这里,我们描述了一种通过近端量子阱的非接触,非辐射能量转移将电子-空穴对间接注入(电子-空穴辐射复合产生光发射)到纳米晶体的方法电气或光学上。我们的理论和实验结果表明,这种转移足够快,足以与量子阱中的电子-空穴复合竞争,并导致被测结构的能量转移效率超过50%。此外,测得的能量传输速率足够大,可以在激发发射模式下提供泵浦,这表明基于纳米晶体的光放大器和基于此方法的激光器的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号