首页> 外文期刊>Nature >Emergence of multi-body interactions in a fermionic lattice clock
【24h】

Emergence of multi-body interactions in a fermionic lattice clock

机译:费米离子晶格钟中多体相互作用的出现

获取原文
获取原文并翻译 | 示例
           

摘要

Alkaline-earth atoms have metastable 'clock' states with minute-long optical lifetimes, high-spin nuclei and SU(N)-symmetric interactions, making them powerful platforms for atomic clocks(1), quantum information processing(2) and quantum simulation(3). Few-particle systems of such atoms provide opportunities to observe the emergence of complex many-body phenomena with increasing system size(4). Multi-body interactions among particles are emergent phenomena, which cannot be broken down into sums over underlying pairwise interactions. They could potentially be used to create exotic states of quantum matter(5,6), but have yet to be explored in ultracold fermions. Here we create arrays of isolated few-body systems in an optical clock based on a three-dimensional lattice of fermionic Sr-87 atoms. We use high-resolution clock spectroscopy to directly observe the onset of elastic and inelastic multi-body interactions among atoms. We measure the frequency shifts of the clock transition for varying numbers of atoms per lattice site, from n = 1 to n = 5, and observe nonlinear interaction shifts characteristic of elastic multi-body effects. These measurements, combined with theory, elucidate an emergence of SU(N)-symmetric multi-body interactions, which are unique to fermionic alkaline-earth atoms. To study inelastic multi-body effects, we use these frequency shifts to isolate n-occupied sites in the lattice and measure the corresponding lifetimes of the clock states. This allows us to access the short-range few-body physics without experiencing the systematic effects that are encountered in a bulk gas. The lifetimes that we measure in the isolated few-body systems agree very well with numerical predictions based on a simple model for the interatomic potential, suggesting a universality in ultracold collisions. By connecting these few-body systems through tunnelling, the favourable energy and timescales of the interactions will allow our system to be used for studies of high-spin quantum magnetism(7,8) and the Kondo effect.
机译:碱土原子具有亚稳态的“时钟”状态,具有较长的光学寿命,高自旋核和SU(N)对称相互作用,使其成为原子钟(1),量子信息处理(2)和量子模拟的强大平台(3)。这种原子的很少有粒子的系统提供了观察随着系统尺寸增大而出现的复杂多体现象的机会(4)。粒子之间的多体相互作用是新出现的现象,无法将其分解为潜在的成对相互作用的总和。它们有可能被用来创造量子态的奇特状态(5,6),但尚未在超冷费米子中进行探索。在这里,我们基于铁离子Sr-87原子的三维晶格在光钟中创建隔离的少体系统的阵列。我们使用高分辨率时钟光谱仪直接观察原子之间弹性和非弹性多体相互作用的发生。我们测量了每个晶格位点上从n = 1到n = 5的原子数变化时的时钟跃迁的频率偏移,并观察了弹性多体效应的非线性相互作用偏移特性。这些测量与理论相结合,阐明了SU(N)对称多体相互作用的出现,这是铁离子碱土原子所独有的。为了研究非弹性多体效应,我们使用这些频移来隔离晶格中的n个占据位点,并测量时钟状态的相应寿命。这使我们能够访问短距离的少体物理学,而不会遇到散装气体中遇到的系统性影响。我们在孤立的少体系统中测量的寿命与基于简单原子间势模型的数值预测非常吻合,这表明超冷碰撞具有普遍性。通过隧穿将这些少数体系统连接起来,相互作用的有利能量和时标将使我们的系统可用于研究高自旋量子磁性(7,8)和近藤效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号