首页> 外文期刊>Nature >Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics
【24h】

Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics

机译:通过纳米光栅图案化的有机光伏电池自供电的超柔性电子设备

获取原文
获取原文并翻译 | 示例
           

摘要

Next-generation biomedical devices(1-9) will need to be self-powered and conformable to human skin or other tissue. Such devices would enable the accurate and continuous detection of physiological signals without the need for an external power supply or bulky connecting wires. Self-powering functionality could be provided by flexible photovoltaics that can adhere to moveable and complex three-dimensional biological tissues(1-4) and skin(5-9). Ultra-flexible organic power sources(10-13) that can be wrapped around an object have proven mechanical and thermal stability in long-term operation(13), making them potentially useful in human-compatible electronics. However, the integration of these power sources with functional electric devices including sensors has not yet been demonstrated because of their unstable output power under mechanical deformation and angular change. Also, it will be necessary to minimize high-temperature and energy-intensive processes(10,12) when fabricating an integrated power source and sensor, because such processes can damage the active material of the functional device and deform the few-micrometre-thick polymeric substrates. Here we realize self-powered ultra-flexible electronic devices that can measure biometric signals with very high signal-to-noise ratios when applied to skin or other tissue. We integrated organic electrochemical transistors used as sensors with organic photovoltaic power sources on a one-micrometre-thick ultra-flexible substrate. A high-throughput room-temperature moulding process was used to form nano-grating morphologies (with a periodicity of 760 nanometres) on the charge transporting layers. This substantially increased the efficiency of the organophotovoltaics, giving a high power-conversion efficiency that reached 10.5 per cent and resulted in a high power-per-weight value of 11.46 watts per gram. The organic electrochemical transistors exhibited a transconductance of 0.8 millisiemens and fast responsivity above one kilohertz under physiological conditions, which resulted in a maximum signal-to-noise ratio of 40.02 decibels for cardiac signal detection. Our findings offer a general platform for next-generation self-powered electronics.
机译:下一代生物医学设备(1-9)将需要自供电并适合人体皮肤或其他组织。这样的设备将能够准确且连续地检测生理信号,而无需外部电源或笨重的连接线。自供电功能可以由可粘附到可移动且复杂的三维生物组织(1-4)和皮肤(5-9)的柔性光伏电池提供。可以包裹在物体上的超柔性有机电源(10-13)在长期运行中已证明具有机械和热稳定性(13),使其在与人兼容的电子产品中很有用。但是,由于这些电源在机械变形和角度变化下的输出功率不稳定,因此尚未将其与包括传感器在内的功能性电子设备集成在一起。同样,在制造集成电源和传感器时,有必要将高温和高能耗过程减至最少(10,12),因为这样的过程会损坏功能器件的活性材料并使几微米厚的厚度变形聚合物基材。在这里,我们实现了自供电的超柔性电子设备,当应用于皮肤或其他组织时,该设备可以以很高的信噪比测量生物特征信号。我们将用作传感器的有机电化学晶体管与有机光伏电源集成在一个1微米厚的超柔性基板上。高通量室温模塑工艺用于在电荷传输层上形成纳米光栅形态(周期为760纳米)。这大大提高了有机光伏的效率,提供了高达10.5%的高功率转换效率,并实现了每克11.46瓦特的高单位重量功率值。有机电化学晶体管在生理条件下表现出0.8毫跨耳的跨导和1千赫兹以上的快速响应能力,这导致心脏信号检测的最大信噪比为40.02分贝。我们的发现为下一代自供电电子产品提供了一个通用平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号