首页> 外文期刊>Nature >Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators
【24h】

Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators

机译:绝缘子上的隧道显微镜观察电子转移后的轨道变化图

获取原文
获取原文并翻译 | 示例
           

摘要

Electron transfer plays a crucial part in many chemical reactions(1,2), including photosynthesis, combustion and corrosion. But even though redox-state transitions change the electronic structure of the molecules involved, mapping these changes at the single-molecule level is challenging. Scanning tunnelling microscopy provides insights into the orbital structure(3) of single molecules and their interactions(4,5), but requires the use of a conductive substrate that keeps molecules in a given charge state and thereby suppresses redox-state transitions. Atomic force microscopy can be used on insulating substrates to obtain structural(6) and electrostatic(7,8) information but does not generally access electronic states. Here we show that when synchronizing voltage pulses that steer electron tunnelling between a conductive atomic force microscope tip and a substrate with the oscillation of the tip, we can perform tunnelling experiments on non-conductive substrates and thereby map the orbital structure of isolated molecules as a function of their redox state. This allows us to resolve previously inaccessible electronic transitions in space and energy and to visualize the effects of electron transfer and polaron formation on individual molecular orbitals. We anticipate that our approach will prove useful for the investigation of complex redox reactions and charging-related phenomena with sub-angstrom resolution.
机译:电子转移在许多化学反应(1,2)中起着至关重要的作用,包括光合作用,燃烧和腐蚀。但是,即使氧化还原状态跃迁改变了所涉及分子的电子结构,将这些变化映射到单分子水平仍具有挑战性。扫描隧道显微镜可以洞悉单个分子的轨道结构(3)及其相互作用(4,5),但需要使用一种导电性基质,以使分子保持在给定的电荷状态,从而抑制氧化还原状态的转变。原子力显微镜可用于绝缘基板上以获得结构(6)和静电(7,8)信息,但通常不访问电子状态。在这里,我们表明,当同步电压脉冲以引导电子在原子力显微镜尖端和基底之间的隧穿与尖端的振荡时,我们可以在非导电基底上进行隧穿实验,从而将孤立分子的轨道结构映射为其氧化还原状态的功能。这使我们能够解决先前在空间和能量上无法实现的电子跃迁,并可视化电子转移和极化子形成对单个分子轨道的影响。我们预计,我们的方法将被证明对研究亚氧化分辨率下的复杂氧化还原反应和与电荷相关的现象很有用。

著录项

  • 来源
    《Nature》 |2019年第7743期|245-248|共4页
  • 作者单位

    Univ Regensburg, Inst Expt & Appl Phys, Regensburg, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号