首页> 外文期刊>Nature >Efficient molecular doping of polymeric semiconductors driven by anion exchange
【24h】

Efficient molecular doping of polymeric semiconductors driven by anion exchange

机译:阴离子交换驱动聚合物半导体的高效分子掺杂

获取原文
获取原文并翻译 | 示例
           

摘要

The efficiency with which polymeric semiconductors can be chemically doped-and the charge carrier densities that can thereby be achieved-is determined primarily by the electrochemical redox potential between the pi-conjugated polymer and the dopant species(1,2). Thus, matching the electron affinity of one with the ionization potential of the other can allow effective doping(3,4). Here we describe a different process-which we term 'anion exchange'- that might offer improved doping levels. This process is mediated by an ionic liquid solvent and can be pictured as the effective instantaneous exchange of a conventional small p-type dopant anion with a second anion provided by an ionic liquid. The introduction of optimized ionic salt (the ionic liquid solvent) into a conventional binary donor-acceptor system can overcome the redox potential limitations described by Marcus theory(5), and allows an anion-exchange efficiency of nearly 100 per cent. As a result, doping levels of up to almost one charge per monomer unit can be achieved. This demonstration of increased doping levels, increased stability and excellent transport properties shows that anion-exchange doping, which can use an almost infinite selection of ionic salts, could be a powerful tool for the realization of advanced molecular electronics.
机译:聚合物半导体的化学掺杂效率以及由此获得的电荷载流子密度主要取决于π共轭聚合物与掺杂物种类之间的电化学氧化还原电势(1,2)。因此,使一个电子亲和力与另一个电离能匹配可以实现有效的掺杂(3,4)。在这里,我们描述了一个不同的过程(我们称之为“阴离子交换”),它可能会提高掺杂水平。此过程是由离子液体溶剂介导的,可以描述为常规的小p型掺杂剂阴离子与离子液体提供的第二种阴离子的有效瞬时交换。在常规的二元供体-受体体系中引入优化的离子盐(离子液体溶剂)可以克服Marcus理论(5)所描述的氧化还原电势限制,并实现近100%的阴离子交换效率。结果,可以实现每个单体单元高达几乎一个电荷的掺杂水平。增加掺杂水平,增加稳定性和出色的传输性能的证明表明,可以几乎无限选择使用离子盐的阴离子交换掺杂可以成为实现先进分子电子学的有力工具。

著录项

  • 来源
    《Nature》 |2019年第7771期|634-638|共5页
  • 作者单位

    Univ Tokyo, MIRC, Kashiwa, Chiba, Japan|Univ Tokyo, Dept Adv Mat Sci, Grad Sch Frontier Sci, Kashiwa, Chiba, Japan|NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, Tsukuba, Ibaraki, Japan;

    Univ Tokyo, MIRC, Kashiwa, Chiba, Japan|Univ Tokyo, Dept Adv Mat Sci, Grad Sch Frontier Sci, Kashiwa, Chiba, Japan|NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, Tsukuba, Ibaraki, Japan;

    Univ Tokyo, MIRC, Kashiwa, Chiba, Japan|Univ Tokyo, Dept Adv Mat Sci, Grad Sch Frontier Sci, Kashiwa, Chiba, Japan;

    Univ Tokyo, MIRC, Kashiwa, Chiba, Japan|Univ Tokyo, Dept Adv Mat Sci, Grad Sch Frontier Sci, Kashiwa, Chiba, Japan;

    Univ Tokyo, MIRC, Kashiwa, Chiba, Japan|Univ Tokyo, Dept Adv Mat Sci, Grad Sch Frontier Sci, Kashiwa, Chiba, Japan;

    Univ Tokyo, MIRC, Kashiwa, Chiba, Japan|Univ Tokyo, Dept Adv Mat Sci, Grad Sch Frontier Sci, Kashiwa, Chiba, Japan;

    Univ Tokyo, MIRC, Kashiwa, Chiba, Japan|Univ Tokyo, Dept Adv Mat Sci, Grad Sch Frontier Sci, Kashiwa, Chiba, Japan|Natl Inst Adv Ind Sci & Technol, AIST UTokyo Adv Operandomeasurement Technol Open, Kashiwa, Chiba, Japan|Japan Sci & Technol Agcy JST, Precursory Res Embryon Sci & Technol PRESTO, Kawaguchi, Saitama, Japan;

    Univ Tokyo, MIRC, Kashiwa, Chiba, Japan|Univ Tokyo, Dept Adv Mat Sci, Grad Sch Frontier Sci, Kashiwa, Chiba, Japan|NIMS, Int Ctr Mat Nanoarchitecton WPI MANA, Tsukuba, Ibaraki, Japan|Natl Inst Adv Ind Sci & Technol, AIST UTokyo Adv Operandomeasurement Technol Open, Kashiwa, Chiba, Japan;

    Univ Tokyo, MIRC, Kashiwa, Chiba, Japan|Univ Tokyo, Dept Adv Mat Sci, Grad Sch Frontier Sci, Kashiwa, Chiba, Japan|Natl Inst Adv Ind Sci & Technol, AIST UTokyo Adv Operandomeasurement Technol Open, Kashiwa, Chiba, Japan|Japan Sci & Technol Agcy JST, Precursory Res Embryon Sci & Technol PRESTO, Kawaguchi, Saitama, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号