首页> 外文期刊>Nature >Efficient molecular doping of polymeric semiconductors driven by anion exchange
【24h】

Efficient molecular doping of polymeric semiconductors driven by anion exchange

机译:通过阴离子交换驱动的聚合物半导体的高效分子掺杂

获取原文
获取原文并翻译 | 示例
           

摘要

The efficiency with which polymeric semiconductors can be chemically doped-and the charge carrier densities that can thereby be achieved-is determined primarily by the electrochemical redox potential between the pi-conjugated polymer and the dopant species(1,2). Thus, matching the electron affinity of one with the ionization potential of the other can allow effective doping(3,4). Here we describe a different process-which we term 'anion exchange'- that might offer improved doping levels. This process is mediated by an ionic liquid solvent and can be pictured as the effective instantaneous exchange of a conventional small p-type dopant anion with a second anion provided by an ionic liquid. The introduction of optimized ionic salt (the ionic liquid solvent) into a conventional binary donor-acceptor system can overcome the redox potential limitations described by Marcus theory(5), and allows an anion-exchange efficiency of nearly 100 per cent. As a result, doping levels of up to almost one charge per monomer unit can be achieved. This demonstration of increased doping levels, increased stability and excellent transport properties shows that anion-exchange doping, which can use an almost infinite selection of ionic salts, could be a powerful tool for the realization of advanced molecular electronics.
机译:聚合物半导体可以进行化学掺杂的效率 - 以及可以实现的电荷载体密度 - 主要通过PI缀合聚合物和掺杂剂物种之间的电化学氧化还原电位(1,2)来确定。因此,与另一个的电离电位匹配的电子亲和力可以允许有效的掺杂(3,4)。在这里,我们描述了一个不同的过程 - 我们术语“阴离子交换” - 可能提供改善的兴奋剂水平。该方法由离子液体溶剂介导,可以用由离子液体提供的第二阴离子的传统小型掺杂剂阴离子的有效瞬时交换。将优化的离子盐(离子液体溶剂)引入常规的二元供受体系统中可以克服Marcus理论(5)所述的氧化还原势限制,并允许阴离子交换效率近100%。结果,可以实现每单体单元的高达几乎一电荷的掺杂水平。这种掺杂水平增加,稳定性和优异的运输特性的展示表明,阴离子交换掺杂,可以使用几乎无限的离子盐,这可能是实现先进的分子电子器件的强大工具。

著录项

  • 来源
    《Nature》 |2019年第7771期|634-638|共5页
  • 作者单位

    Univ Tokyo MIRC Kashiwa Chiba Japan|Univ Tokyo Dept Adv Mat Sci Grad Sch Frontier Sci Kashiwa Chiba Japan|NIMS Int Ctr Mat Nanoarchitecton WPI MANA Tsukuba Ibaraki Japan;

    Univ Tokyo MIRC Kashiwa Chiba Japan|Univ Tokyo Dept Adv Mat Sci Grad Sch Frontier Sci Kashiwa Chiba Japan|NIMS Int Ctr Mat Nanoarchitecton WPI MANA Tsukuba Ibaraki Japan;

    Univ Tokyo MIRC Kashiwa Chiba Japan|Univ Tokyo Dept Adv Mat Sci Grad Sch Frontier Sci Kashiwa Chiba Japan;

    Univ Tokyo MIRC Kashiwa Chiba Japan|Univ Tokyo Dept Adv Mat Sci Grad Sch Frontier Sci Kashiwa Chiba Japan;

    Univ Tokyo MIRC Kashiwa Chiba Japan|Univ Tokyo Dept Adv Mat Sci Grad Sch Frontier Sci Kashiwa Chiba Japan;

    Univ Tokyo MIRC Kashiwa Chiba Japan|Univ Tokyo Dept Adv Mat Sci Grad Sch Frontier Sci Kashiwa Chiba Japan;

    Univ Tokyo MIRC Kashiwa Chiba Japan|Univ Tokyo Dept Adv Mat Sci Grad Sch Frontier Sci Kashiwa Chiba Japan|Natl Inst Adv Ind Sci & Technol AIST UTokyo Adv Operandomeasurement Technol Open Kashiwa Chiba Japan|Japan Sci & Technol Agcy JST Precursory Res Embryon Sci & Technol PRESTO Kawaguchi Saitama Japan;

    Univ Tokyo MIRC Kashiwa Chiba Japan|Univ Tokyo Dept Adv Mat Sci Grad Sch Frontier Sci Kashiwa Chiba Japan|NIMS Int Ctr Mat Nanoarchitecton WPI MANA Tsukuba Ibaraki Japan|Natl Inst Adv Ind Sci & Technol AIST UTokyo Adv Operandomeasurement Technol Open Kashiwa Chiba Japan;

    Univ Tokyo MIRC Kashiwa Chiba Japan|Univ Tokyo Dept Adv Mat Sci Grad Sch Frontier Sci Kashiwa Chiba Japan|Natl Inst Adv Ind Sci & Technol AIST UTokyo Adv Operandomeasurement Technol Open Kashiwa Chiba Japan|Japan Sci & Technol Agcy JST Precursory Res Embryon Sci & Technol PRESTO Kawaguchi Saitama Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号