首页> 外文期刊>Nature >Detection of metastable electronic states by Penning trap mass spectrometry
【24h】

Detection of metastable electronic states by Penning trap mass spectrometry

机译:潘宁阱质谱法检测亚稳态电子态

获取原文
获取原文并翻译 | 示例
           

摘要

State-of-the-art optical clocks(1) achieve precisions of 10(-18) or better using ensembles of atoms in optical lattices(2,3) or individual ions in radio-frequency traps(4,5). Promising candidates for use in atomic clocks are highly charged ions(6) (HCIs) and nuclear transitions(7), which are largely insensitive to external perturbations and reach wavelengths beyond the optical range(8) that are accessible to frequency combs(9). However, insufficiently accurate atomic structure calculations hinder the identification of suitable transitions in HCIs. Here we report the observation of a long-lived metastable electronic state in an HCI by measuring the mass difference between the ground and excited states in rhenium, providing a non-destructive, direct determination of an electronic excitation energy. The result is in agreement with advanced calculations. We use the high-precision Penning trap mass spectrometer PENTATRAP to measure the cyclotron frequency ratio of the ground state to the metastable state of the ion with a precision of 10(-11)-an improvement by a factor of ten compared with previous measurements(10,11). With a lifetime of about 130 days, the potential soft-X-ray frequency reference at 4.96 x 10(16) hertz (corresponding to a transition energy of 202 electronvolts) has a linewidth of only 5 x 10(-8) hertz and one of the highest electronic quality factors (10(24)) measured experimentally so far. The low uncertainty of our method will enable searches for further soft-X-ray clock transitions(8,12) in HCIs, which are required for precision studies of fundamental physics(6).Penning trap mass spectrometry is used to measure the electronic transition energy from a long-lived metastable state to the ground state in highly charged rhenium ions with a precision of 10(-11).
机译:使用光学晶格(2,3)中的原子或射频陷阱(4,5)中的单个离子的集成,最先进的光学时钟(1)可以达到10(-18)或更高的精度。原子钟中最有可能使用的候选物质是高电荷离子(6)(HCI)和核跃迁(7),它们对外部扰动不敏感,并且到达的波长超出了光学范围(8),这些频率可以通过频率梳(9)到达。 。但是,原子结构计算不够准确会阻碍在HCl中确定合适的跃迁。在这里,我们通过测量measuring的基态和激发态之间的质量差,报告了在HCl中长寿命的亚稳态电子态的观察结果,从而提供了对电子激发能的无损直接确定。结果与高级计算一致。我们使用高精度Penning阱质谱仪PENTATRAP测量离子的基态与亚稳态的回旋频率比,精度为10(-11)-与以前的测量相比提高了十倍( 10,11)。寿命约为130天,潜在的软X射线频率参考值为4.96 x 10(16)赫兹(对应于202电子伏特的跃迁能量),线宽仅为5 x 10(-8)赫兹,迄今为止通过实验测得的最高电子质量因数(10(24))。我们方法的低不确定性将使人们能够在HCI中搜索进一步的软X射线时钟跃迁(8,12),这对于基础物理学的精密研究是必不可少的(6)。笔势阱质谱用于测量电子跃迁在高电荷charged离子中从长寿命的亚稳态到基态的能量,精确度为10(-11)。

著录项

  • 来源
    《Nature》 |2020年第7806期|42-46|共5页
  • 作者

  • 作者单位

    Max Planck Inst Nucl Phys Heidelberg Germany;

    Max Planck Inst Nucl Phys Heidelberg Germany|Columbia Univ Dept Phys 538 W 120th St New York NY 10027 USA;

    Heidelberg Univ Inst Theoret Phys Heidelberg Germany;

    PSL Res Univ Sorbonne Univ CNRS Lab Kastler Brossel ENS Paris France;

    Petersburg Nucl Phys Inst Gatchina Russia|St Petersburg State Univ St Petersburg Russia;

    Max Planck Inst Nucl Phys Heidelberg Germany|Univ Sydney Sch Phys ARC Ctr Engn Quantum Syst Sydney NSW Australia;

    RIKEN Fundamental Symmetries Lab Wako Saitama Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号