首页> 外文期刊>Nature >Quantum error correction of a qubit encoded in grid states of an oscillator
【24h】

Quantum error correction of a qubit encoded in grid states of an oscillator

机译:振荡器网格状态中编码的量子误差校正

获取原文
获取原文并翻译 | 示例
           

摘要

The accuracy of logical operations on quantum bits (qubits) must be improved for quantum computers to outperform classical ones in useful tasks. One method to achieve this is quantum error correction (QEC), which prevents noise in the underlying system from causing logical errors. This approach derives from the reasonable assumption that noise is local, that is, it does not act in a coordinated way on different parts of the physical system. Therefore, if a logical qubit is encoded non-locally, we can-for a limited time-detect and correct noise-induced evolution before it corrupts the encoded information(1). In 2001, Gottesman, Kitaev and Preskill (GKP) proposed a hardware-efficient instance of such a non-local qubit: a superposition of position eigenstates that forms grid states of a single oscillator(2). However, the implementation of measurements that reveal this noise-induced evolution of the oscillator while preserving the encoded information(3-7) has proved to be experimentally challenging, and the only realization reported so far relied on post-selection(8,9), which is incompatible with QEC. Here we experimentally prepare square and hexagonal GKP code states through a feedback protocol that incorporates non-destructive measurements that are implemented with a superconducting microwave cavity having the role of the oscillator. We demonstrate QEC of an encoded qubit with suppression of all logical errors, in quantitative agreement with a theoretical estimate based on the measured imperfections of the experiment. Our protocol is applicable to other continuous-variable systems and, in contrast to previous implementations of QEC(10-14), can mitigate all logical errors generated by a wide variety of noise processes and facilitate fault-tolerant quantum computation.
机译:对于量子计算机,必须改进对量子位(QUBITS)上的逻辑操作的准确性,以优于有用的任务中的经典级别。实现这一方法的一种方法是量子纠错(QEC),其防止底层系统中的噪声引起逻辑错误。这种方法来自合理的假设,即噪声是本地的,即,它不在物理系统的不同部分上以协调方式行事。因此,如果非本地编码逻辑量子位,我们可以在损坏编码信息(1)之前,我们可以为有限的时间检测和正确的噪声引起的演进。 2001年,Gottesman,Kitaev和Preskill(GKP)提出了这种非本地Qubit的硬件有效的实例:一个叠加的位置特征,其形成单个振荡器的网格状态(2)。然而,在保留编码信息(3-7)的同时揭示振荡器的测量结果的实施已经证明是在实验挑战的情况下,迄今为止唯一的实现依赖于选择后(8,9) ,这与QEC不兼容。在这里,我们通过反馈协议通过反馈协议进行实验地制定正方形和六边形GKP代码状态,该反馈协议包含具有具有振荡器的角色的超导微波腔的实施方式的非破坏性测量。我们通过基于实验的测量缺陷的理论估计,在定量协议中展示编码符号的QEC。我们的协议适用于其他连续变量系统,与先前的QEC(10-14)实现相比,可以减轻各种噪声过程产生的所有逻辑错误,并促进容错量计算。

著录项

  • 来源
    《Nature》 |2020年第7821期|368-372|共5页
  • 作者单位

    Yale Univ Dept Appl Phys New Haven CT 06520 USA|INRIA Paris Quant Team Paris France;

    Yale Univ Dept Appl Phys New Haven CT 06520 USA;

    Yale Univ Dept Appl Phys New Haven CT 06520 USA|Natl Univ Singapore Ctr Quantum Technol Singapore Singapore;

    Yale Univ Dept Appl Phys New Haven CT 06520 USA;

    Yale Univ Dept Appl Phys New Haven CT 06520 USA;

    Yale Univ Dept Appl Phys New Haven CT 06520 USA;

    Yale Univ Dept Appl Phys New Haven CT 06520 USA;

    Yale Univ Dept Appl Phys New Haven CT 06520 USA;

    Yale Univ Dept Appl Phys New Haven CT 06520 USA|Univ Texas Austin Dept Elect & Comp Engn Austin TX 78712 USA;

    Yale Univ Dept Appl Phys New Haven CT 06520 USA;

    Yale Univ Dept Appl Phys New Haven CT 06520 USA;

    INRIA Paris Quant Team Paris France;

    Yale Univ Dept Appl Phys New Haven CT 06520 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号