首页> 外文期刊>Nature >Co-designing electronics with microfluidics for more sustainable cooling
【24h】

Co-designing electronics with microfluidics for more sustainable cooling

机译:具有微流体的共同设计电子设备,可持续冷却

获取原文
获取原文并翻译 | 示例
           

摘要

Thermal management is one of the main challenges for the future of electronics~(1-5). With the ever-increasing rate of data generation and communication, as well as the constant push to reduce the size and costs of industrial converter systems, the power density of electronics has risen~(6). Consequently, cooling, with its enormous energy and water consumption, has an increasingly large environmental impact~(7,8), and new technologies are needed to extract the heat in a more sustainable way-that is, requiring less water and energy~(9). Embedding liquid cooling directly inside the chip is a promising approach for more efficient thermal management~(5,10,11). However, even in state-of-the-art approaches, the electronics and cooling are treated separately, leaving the full energy-saving potential of embedded cooling untapped. Here we show that by co-designing microfluidics and electronics within the same semiconductor substrate we can produce a monolithically integrated manifold microchannel cooling structure with efficiency beyond what is currently available. Our results show that heat fluxes exceeding 1.7 kilowatts per square centimetre can be extracted using only 0.57 watts per square centimetre of pumping power. We observed an unprecedented coefficient of performance (exceeding 10,000) for single-phase water-cooling of heat fluxes exceeding 1 kilowatt per square centimetre, corresponding to a 50-fold increase compared to straight microchannels, as well as a very high average Nusselt number of 16. The proposed cooling technology should enable further miniaturization of electronics, potentially extending Moore's law and greatly reducing the energy consumption in cooling of electronics. Furthermore, by removing the need for large external heat sinks, this approach should enable the realization of very compact power converters integrated on a single chip.
机译:热管理是电子产品的主要挑战之一〜(1-5)。随着数据发电和通信的不断增加,以及不断推动降低工业转换系统的尺寸和成本,电子器件的功率密度具有上升〜(6)。因此,具有巨大的能量和耗水量的冷却具有越来越大的环境影响〜(7,8),并且需要新技术以更可持续的方式提取热量 - 即,需要更少的水和能量〜( 9)。直接在芯片内部嵌入液体冷却是更有效的热管理〜(5,10,11)的有希望的方法。然而,即使在最先进的方法中,电子和冷却也被单独处理,留下嵌入式冷却的全节能潜力。在这里,我们表明,通过在同一半导体衬底内共同设计微流体和电子器件,我们可以产生单片集成的歧管微通道冷却结构,其效率超出目前可用的效率。我们的研究结果表明,每平方厘米超过1.7千瓦的热量可以使用每平方厘米的0.57瓦的泵送电力提取。我们观察到前所未有的性能系数(超过10,000),用于每平方厘米超过1千瓦的热通量的单相水冷却,与直筒微通道相比,相应于50倍的增加,以及一个非常高的平均营养数16.拟议的冷却技术应进一步开展电子产品小型化,潜在地延长摩尔定律,大大降低了电子设备冷却中的能耗。此外,通过去除对大型外部散热器的需要,这种方法应使得能够实现集成在单个芯片上的非常紧凑的功率转换器。

著录项

  • 来源
    《Nature》 |2020年第7824期|211-216|共6页
  • 作者单位

    Power and Wide-band-gap Electronics Research Laboratory (POWERlab) Institute of Electrical Engineering École Polytechnique Fédérale de Lausanne (EPFL);

    Power and Wide-band-gap Electronics Research Laboratory (POWERlab) Institute of Electrical Engineering École Polytechnique Fédérale de Lausanne (EPFL);

    Power and Wide-band-gap Electronics Research Laboratory (POWERlab) Institute of Electrical Engineering École Polytechnique Fédérale de Lausanne (EPFL);

    Power and Wide-band-gap Electronics Research Laboratory (POWERlab) Institute of Electrical Engineering École Polytechnique Fédérale de Lausanne (EPFL);

    Power and Wide-band-gap Electronics Research Laboratory (POWERlab) Institute of Electrical Engineering École Polytechnique Fédérale de Lausanne (EPFL);

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号