首页> 外文期刊>Nature >Exponential suppression of bit or phase errors with cyclic error correction
【24h】

Exponential suppression of bit or phase errors with cyclic error correction

机译:具有循环误差校正的位或相位误差的指数抑制

获取原文
获取原文并翻译 | 示例
           

摘要

Realizing the potential of quantum computing requires sufficiently low logical error rates~(1). Many applications call for error rates as low as 10~(-15)(refs.~(2-9)), but state-of-the-art quantum platforms typically have physical error rates near 10~(-3)(refs.~(10-14)). Quantum error correction~(15-17)promises to bridge this divide by distributing quantum logical information across many physical qubits in such a way that errors can be detected and corrected. Errors on the encoded logical qubit state can be exponentially suppressed as the number of physical qubits grows, provided that the physical error rates are below a certain threshold and stable over the course of a computation. Here we implement one-dimensional repetition codes embedded in a two-dimensional grid of superconducting qubits that demonstrate exponential suppression of bit-flip or phase-flip errors, reducing logical error per round more than 100-fold when increasing the number of qubits from 5 to 21. Crucially, this error suppression is stable over 50 rounds of error correction. We also introduce a method for analysing error correlations with high precision, allowing us to characterize error locality while performing quantum error correction. Finally, we perform error detection with a small logical qubit using the 2D surface code on the same device~(18,19)and show that the results from both one- and two-dimensional codes agree with numerical simulations that use a simple depolarizing error model. These experimental demonstrations provide a foundation for building a scalable fault-tolerant quantum computer with superconducting qubits.
机译:实现量子计算的电位需要足够低的逻辑误差速率〜(1)。许多应用程序呼叫低至10〜(-15)的错误率(参考文献〜(2-9)),但最先进的量子平台通常具有近10〜(-3)的物理误差率(参考文献。〜(10-14))。量子误差校正〜(15-17)通过在许多物理QUBITS上分布Quantum逻辑信息,以便可以检测和更正错误。由于物理Qubits的数量增长,所编码逻辑量子位状态的错误可以呈指数抑制,因为物理误差率低于特定阈值并在计算过程中稳定。在这里,我们实现了嵌入在超导Qubits的二维网格中的一维重复码,其演示了对指数抑制的位翻转或相位翻转误差,在增加5的Qubits的数量时,每轮的逻辑误差超过100倍至21.至关重要的是,该误差抑制在50次误差校正超过50轮稳定。我们还介绍了一种用于分析具有高精度的误差相关性的方法,允许我们在执行量子纠错的同时表征错误局部。最后,我们使用同一设备上的2D表面代码执行错误检测〜(18,19),并显示了一个和二维代码的结果与使用简单的去极化误差的数值模拟同意模型。这些实验演示为建立具有超导Qubits的可扩展容错量子计算机提供了基础。

著录项

  • 来源
    《Nature》 |2021年第7867期|383-387|共5页
  • 作者

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号