首页> 外文期刊>Nature >EFFICIENT PHOTODIODES FROM INTERPENETRATING POLYMER NETWORKS
【24h】

EFFICIENT PHOTODIODES FROM INTERPENETRATING POLYMER NETWORKS

机译:互穿聚合物网络中的高效光电二极管

获取原文
获取原文并翻译 | 示例
           

摘要

THE photovoltaic effect involves the production of electrons and holes in a semiconductor device under illumination, and their subsequent collection at opposite electrodes. In many inorganic semiconductors, photon absorption produces free electrons and holes directly(1). But in molecular semiconductors, absorption creates electron-hole pairs (excitons) which are bound at room temperature(2), so that charge collection requires their dissociation, Exciton dissociation is known to be efficient at interfaces between materials with different electron affinities and ionization potentials, where the electron is accepted by the material with larger electron affinity and the hole by the material with lower ionization potential(3). A two-layer diode structure can thus be used, in which excitons generated in either layer diffuse towards the interface between the layers. However, the exciton diffusion range is typically at least a factor of 10 smaller than the optical absorption depth, thus limiting the efficiency of charge collection(3). Here we show that the interpenetrating network formed from a phase-segregated mixture of two semiconducting polymers provides both the spatially distributed interfaces necessary for efficient charge photogeneration, and the means for separately collecting the electrons and holes. Devices using thin films of these polymer mixtures show promise for large-area photodetectors. [References: 24]
机译:光伏效应包括在照明下在半导体器件中产生电子和空穴,以及随后在相对电极处收集电子和空穴。在许多无机半导体中,光子吸收直接产生自由电子和空穴(1)。但是在分子半导体中,吸收会产生在室温下束缚的电子-空穴对(激子)(2),因此电荷收集需要解离。已知激子解离在具有不同电子亲和力和电离势的材料之间的界面处非常有效,其中电子被具有较高电子亲和力的材料所接受,而空穴被具有较低电离势的材料所接受(3)。因此可以使用两层二极管结构,其中在任一层中产生的激子朝着层之间的界面扩散。但是,激子扩散范围通常比光吸收深度小至少10倍,因此限制了电荷收集的效率(3)。在这里,我们表明由两种半导体聚合物的相分离混合物形成的互穿网络既提供了有效电荷光生所需的空间分布界面,又提供了分别收集电子和空穴的手段。使用这些聚合物混合物的薄膜的器件显示出大面积光电探测器的前景。 [参考:24]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号