...
首页> 外文期刊>Nuclear fusion >A PIC-MCC code RFdinityld for simulation of discharge initiation by ICRF antenna
【24h】

A PIC-MCC code RFdinityld for simulation of discharge initiation by ICRF antenna

机译:PIC-MCC代码RFdinityld,用于模拟ICRF天线引发的放电

获取原文
获取原文并翻译 | 示例
           

摘要

Discharges produced and sustained by ion cyclotron range of frequency (ICRF) waves in absence of plasma current will be used on ITER for (ion cyclotron-) wall conditioning (ICWC, T_e = 3—5 eV, n_e < 1018 m~(-3)). In this paper, we present the ID particle-in-cell Monte Carlo collision (PIC-MCC) RFdinityld for the study the breakdown phase of ICRF discharges, and its dependency on the RF discharge parameters (i) antenna input power P_i (ii) RF frequency f, (iii) shape of the electric field and (iv) the neutral gas pressure p_(H_2). The code traces the motion of both electrons and ions in a narrow bundle of magnetic field lines close to the antenna straps. The charged particles are accelerated in the parallel direction with respect to the magnetic field B_T by two electric fields: (i) the vacuum RF field of the ICRF antenna E_z~(RF) and (ii) the electrostatic field E_z~P determined by the solution of Poisson's equation. The electron density evolution in simulations follows exponential increase, n_e ~ V_(ion) t. The ionization rate varies with increasing electron density as different mechanisms become important. The charged particles are affected solely by the antenna RF field E_z~(RF) at low electron density (n_e < 10~(11) m~(-3), ||E_z~(RF)||E_z~P|). At higher densities, when the electrostatic field E_z~P is comparable to the antenna RF field E_z~(RF), the ionization frequency reaches the maximum. Plasma oscillations propagating toroidally away from the antenna are observed. The simulated energy distributions of ions and electrons at n_e ~ 10~(15) m~(-3) correspond a power-law Kappa energy distribution. This energy distribution was also observed in NPA measurements at ASDEX Upgrade in ICWC experiments.
机译:在没有等离子体电流的情况下,离子回旋加速器的频率范围(ICRF)波产生并维持的放电将用于ITER进行(离子回旋加速器)壁调节(ICWC,T_e = 3-5 eV,n_e <1018 m〜(-3 ))。在本文中,我们提出了ID单元内蒙特卡罗碰撞(PIC-MCC)RFdinityld,用于研究ICRF放电的击穿阶段及其对RF放电参数的依赖性(i)天线输入功率P_i(ii) RF频率f,(iii)电场形状和(iv)中性气压p_(H_2)。该代码跟踪靠近天线带的狭窄磁场束中电子和离子的运动。带电粒子通过两个电场在平行于磁场B_T的方向上加速:(i)ICRF天线的真空RF场E_z〜(RF)和(ii)由电场确定的静电场E_z〜P。泊松方程的解。模拟中的电子密度演化遵循指数增长n_e〜V_(ion)t。随着不同的机理变得重要,电离速率随着电子密度的增加而变化。带电粒子仅在低电子密度(n_e <10〜(11)m〜(-3),|| E_z〜(RF)| | E_z〜P |时受天线RF场E_z〜(RF)的影响。 )。在更高的密度下,当静电场E_z〜P与天线RF场E_z〜(RF)相当时,电离频率达到最大值。观察到等离子体振荡以环形方式远离天线传播。离子和电子在n_e〜10〜(15)m〜(-3)处的模拟能量分布对应于幂律Kappa能量分布。在ICWC实验中,在ASDEX升级的NPA测量中也观察到了这种能量分布。

著录项

  • 来源
    《Nuclear fusion》 |2017年第12期|508-518|共11页
  • 作者单位

    Laboratory for Plasma Physics, ERM/KMS, 1000 Brussels, TEC partner, Belgium,Department of Applied Physics, Ghent University, 9000 Ghent, Belgium;

    Laboratory for Plasma Physics, ERM/KMS, 1000 Brussels, TEC partner, Belgium;

    Laboratory for Plasma Physics, ERM/KMS, 1000 Brussels, TEC partner, Belgium;

    Max-Planck Institut fur Plasmaphysik, 85748 Garching, Germany;

    Max-Planck Institut fur Plasmaphysik, 85748 Garching, Germany;

    Laboratory for Plasma Physics, ERM/KMS, 1000 Brussels, TEC partner, Belgium;

    CEA, IRFM, 13108 St Paul lez Durance, France;

    Laboratory for Plasma Physics, ERM/KMS, 1000 Brussels, TEC partner, Belgium;

    Department of Applied Physics, Ghent University, 9000 Ghent, Belgium,Max-Planck Institut fur Plasmaphysik, 85748 Garching, Germany;

    Laboratory for Plasma Physics, ERM/KMS, 1000 Brussels, TEC partner, Belgium;

    Max-Planck Institut fur Plasmaphysik, 85748 Garching, Germany;

    @;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ICRF antennas; RF discharge production; Tokamak; Monte Carlo; PIC;

    机译:ICRF天线;射频放电产生;托卡马克蒙特卡洛;PIC;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号