Abst'/> A numerical tool for the frequency domain simulation of large arrays of identical floating bodies in waves
首页> 外文期刊>Ocean Engineering >A numerical tool for the frequency domain simulation of large arrays of identical floating bodies in waves
【24h】

A numerical tool for the frequency domain simulation of large arrays of identical floating bodies in waves

机译:波浪中大型相同浮体阵列的频域仿真的数值工具

获取原文
获取原文并翻译 | 示例
           

摘要

AbstractThe finite-depth interaction theory (IT) introduced by Kagemoto H. and Yue (1986) enables one to drastically speed up the computation of the added mass, damping and excitation force coefficients of a group (”farm”) of floating bodies when compared to direct calculations with standard widely available boundary element method (BEM) codes. An essential part of the theory is the calculation of two hydrodynamic operators, which characterize the way a body diffracts and radiates waves, known as Diffraction Transfer Matrix (DTM) and Radiation Characteristics (RC) respectively. Two different strategies to compute them for arbitrary geometries have been proposed in the literature (Goo, J.-S. and Yoshida, 1990; McNatt J. C. et al., 2015). The purpose of this study is to present the implementation of the former in the zeroth-order BEM solver NEMOH and to compare it with the latter by providing an insight into the DTM and the RC of a truncated vertical circular cylinder and a square box. A very good agreement between the hydrodynamic operators computed with both methodologies is obtained. In addition, hydrodynamic coefficients generated by means of the IT are verified against direct NEMOH calculations for two different array layouts. Results show the effect of hydrodynamic interactions as well as the importance of the evanescent modes truncation for closely spaced configurations.HighlightsAn implementation of the methodology by Goo and Yoshida (1990) in the open-source BEM code NEMOH is presented.Comparisons to an alternative methodology developed by McNatt (2015) and to a semi-analytical solution are shown.The components of the Diffraction Transfer Matrix (DTM) and the Radiation Characteristics (RC) are plotted.The frequency-dependent patterns of the DTM and the RC of both a truncated vertical cylinder and a cube are analysed.
机译: 摘要 Kagemoto H.和Yue(1986)引入的有限深度相互作用理论(IT)使人们可以大大加快计算速度。与使用标准广泛可用的边界元方法(BEM)代码进行的直接计算相比,一组(“场”)浮体的附加质量,阻尼和激励力系数。该理论的重要部分是计算两个流体动力学算子,它们分别描述了人体衍射和辐射波的方式,分别称为衍射传递矩阵(DTM)和辐射特性(RC)。文献中提出了两种针对任意几何形状进行计算的策略(Goo,J.-S.和Yoshida,1990; McNatt J.C. et al。,2015)。这项研究的目的是介绍前者在零阶BEM求解器NEMOH中的实现,并通过深入了解截断的垂直圆柱和方盒的DTM和RC来与后者进行比较。使用这两种方法计算出的流体力学算子之间取得了很好的一致性。此外,针对两个不同的阵列布局,针对直接NEMOH计算,验证了通过IT生成的流体动力系数。结果显示了流体动力相互作用的影响以及渐逝模式截断对于紧密间隔配置的重要性。 突出显示 介绍了Goo和Yoshida(1990)在开源BEM代码NEMOH中的方法实现。 与以下人员开发的替代方法的比较显示了McNatt(2015)和一个半解析的解决方案。 绘制了衍射传递矩阵(DTM)和辐射特性(RC)的分量。 The分析了截短的垂直圆柱体和立方体的DTM和RC的频率相关模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号