...
首页> 外文期刊>Optical and quantum electronics >Hybrid surface plasmon waveguide device of periodic grating structure
【24h】

Hybrid surface plasmon waveguide device of periodic grating structure

机译:周期性光栅结构的混合表面等离子体激元波导器件

获取原文
获取原文并翻译 | 示例
           

摘要

Large-scale integration of traditional optical waveguide and electronic crystal devices cannot be realized because of optical diffraction. However, this restriction has been lifted by surface plasmon technology by providing the possibility of restraining and manipulating the light energy at the nano scale. In this study, the surface plasmon waveguide device of glass-lithium niobate-gold-lithium niobate has been designed. The structure consists of four layers: the first layer is glass, the third layer is periodic grating, and next to the grating is a symmetrical structure of lithium niobate. The grating thickness, LiNbO3 thickness, and Au grating width are used for modal analysis of the waveguide structure. Then, the test range of each parameter is adjusted in accordance with the simulation results to determine the optimal geometric parameters. Results show that the transmission loss is as low as 0.0004-0.0017 cm~(-1) and the normalized mode area is always less than 0.053 when the thickness range of lithium niobate is from 380 to 400 nm. Meanwhile, the optimum geometric parameters of the structure are obtained using comprehensive analysis of the simulation. The normalized field area is 0.0334 and the propagation loss is 0.0004 cm~(-1) when the Au thickness is 150 nm, the LiNbO3 thickness is 389 nm, and the grating width is 42 nm. In this condition, the waveguide can obtain deep subwavelength mode limiting capacity while reaching the minimum propagation. The structure can fully achieve the deep subwavelength constraints for the light field and exhibits excellent waveguide characteristics.
机译:由于光学衍射,无法实现传统的光波导和电子晶体器件的大规模集成。然而,通过提供在纳米级限制和操纵光能的可能性,表面等离子体激元技术已经解除了这种限制。在这项研究中,设计了玻璃铌酸锂-金铌酸锂的表面等离子体激元波导器件。结构由四层组成:第一层是玻璃,第三层是周期性光栅,其次是对称的铌酸锂结构。光栅厚度,LiNbO3厚度和Au光栅宽度用于波导结构的模态分析。然后,根据仿真结果调整每个参数的测试范围,以确定最佳几何参数。结果表明,当铌酸锂的厚度范围为380nm至400nm时,传输损耗低至0.0004-0.0017 cm〜(-1),归一化模态面积始终小于0.053。同时,通过对仿真的综合分析,获得了结构的最佳几何参数。当Au厚度为150nm,LiNbO3厚度为389nm,光栅宽度为42nm时,归一化场面积为0.0334,传播损耗为0.0004cm〜(-1)。在这种情况下,波导可以在达到最小传播的同时获得深亚波长模式的限制能力。该结构可以完全实现对光场的深亚波长约束,并具有出色的波导特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号