...
首页> 外文期刊>Organic Electronics >Opposing influence of hole blocking layer and a doped transport layer on the performance of heterostructure OLEDs
【24h】

Opposing influence of hole blocking layer and a doped transport layer on the performance of heterostructure OLEDs

机译:空穴阻挡层和掺杂的传输层对异质结构OLED性能的相反影响

获取原文
获取原文并翻译 | 示例
           

摘要

This paper reports on heterostructure small molecule organic light emitting devices (OLEDs), the design of which includes doped hole and electron transport layer (HTL and ETL) and a hole blocking layer (HBL) which can be either doped or not. Doped transport layers are expected to lower the operating voltage of devices. Insertion of a hole blocking layer increases the carrier and exciton confinement which consequently improves the recombination rate and the device efficiency. Nevertheless, an HBL tends to increase the threshold voltage. The opposing influence of doped transport layers and HBL is evidenced in this study and compromise structures are presented. The doped HTL material is N, N′-bis(3-methylphenyl)-N, N′-diphenylbenzidine (TPD) doped with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quino-dimethane (F4-TCNQ). A comparison with undoped TPD and poly(N-vinylcarbazole) (PVK) HTL is given. Devices with doped HTL show a lowering of the operating voltage from 6.5 (PVK) down to 4 V (these voltages refer to those necessary to achieve a luminance L = 10 Cd/m~2). A constant current efficiency higher than 2 Cd/A is obtained in the voltage range 5-9 V with doped HTL. Insertion of a 5-20 nm thick HBL made of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (Bathocuproine BCP) between an 8-(hydroquinoline) aluminum (Alq_3) electron transport layer (ETL) and a DCM doped Alq_3 emitting layer (EML) induces both a detrimental effect (increase of the operating voltage to 6 V attributed to a low electron mobility in BCP) and beneficial effect (strong increase of the luminance and doubling of the current efficiency which reach to about 4.5 Cd/A thanks to improved carrier and exciton confinement). An optimization of the thickness of the doped EML and of BCP is also reported. The doping of the HBL and of the ETL with 2-(4-biphenyl)-5-(4-tert-butylphenyl)-l,3,4-oxadiazole (PBD) leads to devices with luminance as high as 1000 Cd/m~2 at 5.3 V and a maximum efficiency of 1 Cd/A at 4 V.
机译:本文报道了异质结构的小分子有机发光器件(OLED),其设计包括掺杂的空穴和电子传输层(HTL和ETL)以及可以掺杂或不掺杂的空穴阻挡层(HBL)。掺杂的传输层有望降低器件的工作电压。空穴阻挡层的插入增加了载流子和激子的约束,因此提高了复合率和器件效率。然而,HBL趋于增加阈值电压。这项研究证明了掺杂的传输层和HBL的相反影响,并提出了折衷结构。掺杂的HTL材料是掺杂有2,3,5,6-四氟-7,7,8,8-四氰基-喹啉-的N,N'-双(3-甲基苯基)-N,N'-二苯基联苯胺(TPD)二氯甲烷(F4-TCNQ)。给出了与未掺杂TPD和聚(N-乙烯基咔唑)(PVK)HTL的比较。掺杂了HTL的器件的工作电压从6.5(PVK)降低到4 V(这些电压是指达到亮度L = 10 Cd / m〜2所必需的电压)。掺杂HTL在5-9 V的电压范围内可获得高于2 Cd / A的恒定电流效率。将由2,9-二甲基-4,7-二苯基-1,10-菲咯啉(Bathocuproine BCP)制成的5-20 nm厚的HBL在8-(氢喹啉)铝(Alq_3)电子传输层(ETL)和掺杂DCM的Alq_3发射层(EML)既会产生有害影响(由于BCP中的电子迁移率较低,工作电压会增加到6 V),也可能会产生有益影响(亮度达到很高,电流效率增加一倍)得益于改进的载流子和激子限制,可达到约4.5 Cd / A)。还报道了掺杂的EML和BCP的厚度的优化。用2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-恶二唑(PBD)掺杂HBL和ETL导致器件的亮度高达1000 Cd / m 5.3 V时为〜2,4 V时的最大效率为1 Cd / A。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号