...
首页> 外文期刊>Physical review >Dipolar interaction induced band gaps and flat modes in surface-modulated magnonic crystals
【24h】

Dipolar interaction induced band gaps and flat modes in surface-modulated magnonic crystals

机译:偶极相互作用引起表面调制的强子晶体中的带隙和平坦模式

获取原文
获取原文并翻译 | 示例
           

摘要

Theoretical results for the magnetization dynamics of a magnonic crystal formed by grooves on the surface of a ferromagnetic film, called a surface-modulated magnonic crystal, are presented. For such a system, the role of the periodic dipolar field induced by the geometrical modulation is addressed by using the plane-wave method. The results reveal that, under the increasing of the depth of the grooves, zones with magnetizing and demagnetizing fields act on the system in such a way that magnonic band gaps are observed in both Damon-Eshbach and backward volume geometries. Particularly, in the backward volume configuration, high-frequency band gaps and low-frequency flat modes are obtained. By taking into account the properties of the internal field induced by the grooves, the flattening of the modes and their shift towards low frequencies are discussed and explained. To test the validity of the model, the theoretical results of this work are confirmed by micromagnetic simulations, and good agreement between both methods is achieved. The theoretical model allows for a detailed understanding of the physics underlying these kinds of systems, thereby providing an outlook for potential applications on magnonic devices.
机译:提出了由铁磁膜表面上的沟槽形成的镁磁晶体的磁化动力学的理论结果,称为表面调制镁磁晶体。对于这样的系统,通过使用平面波方法解决了由几何调制引起的周期性偶极场的作用。结果表明,随着凹槽深度的增加,具有磁化场和消磁场的区域将以这种方式作用于系统,从而在Damon-Eshbach和向后的体积几何结构中均观察到强磁带隙。特别地,在后向体积配置中,获得了高频带隙和低频平坦模式。通过考虑由凹槽引起的内部场的特性,讨论并解释了模式的平坦化及其向低频的偏移。为了验证模型的有效性,通过微磁仿真证实了这项工作的理论结果,并且在两种方法之间取得了良好的一致性。理论模型可让您详细了解这些类型系统的基础物理原理,从而为大型设备的潜在应用提供了前景。

著录项

  • 来源
    《Physical review》 |2018年第14期|393-401|共9页
  • 作者单位

    Departamento de Flsica, Universidad Tecnica Federico Santa Maria, Avenida Espana 1680, Valparaiso, Chile,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 917-0124 Santiago, Chile;

    Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf,Bautzner Landstrasse 400, 01328 Dresden, Germany ,Department of Physics, Technische Universitdt Chemnitz, Reichenhainer Strasse 70, 09126 Chemnitz, Germany;

    Universidad de Aysen, Calle Obispo Vielmo 62. Coyhaique, Chile;

    Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf,Bautzner Landstrasse 400, 01328 Dresden, Germany ,Institute for Physics of Solids, Technische Universität Dresden, Zellescher Weg 16, 01069 Dresden, Germany,Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland;

    Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf,Bautzner Landstrasse 400, 01328 Dresden, Germany;

    Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf,Bautzner Landstrasse 400, 01328 Dresden, Germany;

    Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf,Bautzner Landstrasse 400, 01328 Dresden, Germany;

    Departamento de Flsica, Universidad Tecnica Federico Santa Maria, Avenida Espana 1680, Valparaiso, Chile,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 917-0124 Santiago, Chile;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    144405.1-144405.9;

    机译:144405.1-144405.9;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号