...
首页> 外文期刊>Physical review >Effective spin Hall properties of a mixture of materials with and without spin-orbit coupling: Tailoring the effective spin diffusion length
【24h】

Effective spin Hall properties of a mixture of materials with and without spin-orbit coupling: Tailoring the effective spin diffusion length

机译:具有和不具有自旋-轨道耦合的混合材料的有效自旋霍耳特性:调整有效自旋扩散长度

获取原文
获取原文并翻译 | 示例
           

摘要

We study theoretically the effective spin Hall properties of a composite consisting of two materials with and without spin-orbit (SO) coupling. In particular, we assume that SO material represents a system of grains in a matrix with no SO. We calculate the effective spin Hall angle and the effective spin diffusion length of the mixture. Our main qualitative finding is that, when the bare spin diffusion length is much smaller than the radius of the grain, the effective spin diffusion length is strongly enhanced, well beyond the "geometrical" factor. The physical origin of this additional enhancement is that, with small diffusion length, the spin current mostly flows around the grain without suffering much loss. We also demonstrate that the voltage, created by a spin current, is sensitive to a very weak magnetic field directed along the spin current, and even reverses sign in a certain domain of fields. The origin of this sensitivity is that the spin precession, caused by magnetic field, takes place outside the grains where SO is absent.
机译:我们从理论上研究了包含和不具有自旋轨道(SO)耦合的两种材料组成的复合材料的有效自旋霍尔特性。尤其是,我们假设SO材料表示没有SO的基体中的晶粒系统。我们计算了混合物的有效自旋霍尔角和有效自旋扩散长度。我们的主要定性研究结果是,当裸自旋扩散长度远小于晶粒半径时,有效自旋扩散长度会大大增强,远远超出了“几何”因素。这种附加增强的物理原因是,由于扩散长度短,自旋电流大部分在晶粒周围流动,而没有太大的损耗。我们还证明了由自旋电流产生的电压对沿自旋电流定向的非常弱的磁场敏感,甚至在特定的磁场域中反转符号。这种敏感性的根源是由磁场引起的自旋旋进发生在没有SO的晶粒外。

著录项

  • 来源
    《Physical review》 |2016年第4期|045307.1-045307.9|共9页
  • 作者单位

    Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA;

    Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA;

    Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA;

    Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号