...
首页> 外文期刊>Physical review >Activation of frozen ferroelectric domain wall by magnetic field sweeping in multiferroic CuFeO_2
【24h】

Activation of frozen ferroelectric domain wall by magnetic field sweeping in multiferroic CuFeO_2

机译:多铁性CuFeO_2中磁场扫描激活冻结铁电畴壁

获取原文
获取原文并翻译 | 示例
           

摘要

In a ferroelectric helimagnetic phase of a spin-driven multiferroic, CuFeO_2, we find irreversibly additive evolution of electric polarization P induced by sweeping magnetic field H under an applied electric field E, despite a large coercive electric field in the phase. From the unpolarized neutron diffraction experiments with in situ P measurements under applied E, we reveal that increment of P is achieved by the variation of an incommensurate magnetic modulation wave number q of the helical magnetic ordering in H sweeping regardless of increasing or decreasing H. Combining this result with the H dependence of the magnetic diffraction intensity and a result of off-bench P measurements, we conclude that the H evolution of P is caused by a change in a (ferroelectric) helicity domain volume fraction by driving the helicity domain wall (DW). Taking into account the results of further detailed P measurements, we provide a speculation for microscopic helicity DW motion. The present study demonstrates the magnetoelectric cross correlation in driving a multiferroic DW: we can activate the frozen ferroelectric DW by means of H sweeping. This is also an achievement of driving an antiferromagnetic DW, which is difficult in conventional antiferromagnets in principle.
机译:在自旋驱动多铁性CuFeO_2的铁电正磁性相中,我们发现,尽管相中有很大的矫顽电场,但在施加电场E的作用下,由扫掠磁场H诱导的极化P的不可逆加性演化。从在施加的E下进行原位P测量的非极化中子衍射实验中,我们发现P的增加是通过H扫描中螺旋磁序的不相称的磁调制波数q的变化实现的,而与H的增加或减少无关。该结果与磁衍射强度的H依赖性以及离线P测量的结果得出的结论是,我们得出结论,P的H演化是由驱动铁磁畴壁(铁电)的铁磁畴体积分数的变化引起的( DW)。考虑到更详细的P测量结果,我们推测微观螺旋DW运动。本研究证明了驱动多铁性DW时的磁电互相关:我们可以通过H扫描激活冻结的铁电性DW。这也是驱动反铁磁DW的一项成就,从原理上讲,这是常规反铁磁体所难以实现的。

著录项

  • 来源
    《Physical review》 |2016年第17期|174101.1-174101.10|共10页
  • 作者单位

    Department of Physics, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan;

    Department of Physics, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan;

    Department of Physics, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan;

    Department of Physics, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan;

    Department of Physics, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan;

    National Institute for Materials Science, Nano Physics Group, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan;

    National Institute for Materials Science, Nano Physics Group, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan;

    National Institute for Materials Science, Neutron Scattering Group, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan;

    National Institute for Materials Science, Neutron Scattering Group, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan;

    Helmholtz-Centre Berlin for Materials and Energy, Glienicker Strasse 100, Berlin 14109, Germany;

    Helmholtz-Centre Berlin for Materials and Energy, Glienicker Strasse 100, Berlin 14109, Germany;

    Helmholtz-Centre Berlin for Materials and Energy, Glienicker Strasse 100, Berlin 14109, Germany;

    Helmholtz-Centre Berlin for Materials and Energy, Glienicker Strasse 100, Berlin 14109, Germany;

    Helmholtz-Centre Berlin for Materials and Energy, Glienicker Strasse 100, Berlin 14109, Germany;

    Helmholtz-Centre Berlin for Materials and Energy, Glienicker Strasse 100, Berlin 14109, Germany;

    Helmholtz-Centre Berlin for Materials and Energy, Glienicker Strasse 100, Berlin 14109, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号