...
首页> 外文期刊>Physical review >Excitonic complexes in natural InAs/GaAs quantum dots
【24h】

Excitonic complexes in natural InAs/GaAs quantum dots

机译:天然InAs / GaAs量子点中的激子复合物

获取原文
获取原文并翻译 | 示例
           

摘要

The quantum confinement in a typical quantum dot (QD) is determined primarily by the nanosystem's dimensions and average composition. We demonstrate, however, that excitonic properties of natural QDs formed in the InAs/GaAs wetting layer are governed predominantly by effects of random fluctuations of the lattice composition. It is shown that the biexciton binding energy is a very sensitive function of the lattice randomness with a nearly flat dependence on the exciton energy. The large variation in different random realizations of a QD structure is shown to lead in some cases to the reversal of the order of excitonic lines. Results of theoretical calculations correspond to statistical properties of neutral excitons and biexcitons as well as trions confined to single natural QDs studied in our microspectroscopic measurements. We observe substantial variation of the biexciton and trion binding energies as well as a correlation of the trion and the biexciton energies. The transition from the negative to the positive binding energy of the trion is also observed, which strongly supports the attribution of the observed trion to the positively charged exciton.
机译:典型量子点(QD)中的量子限制主要由纳米系统的尺寸和平均组成决定。但是,我们证明了在InAs / GaAs润湿层中形成的天然QD的激子性质主要受晶格组成随机波动的影响。结果表明,双激子结合能是晶格随机性的一个非常敏感的函数,几乎与激子能量成平坦关系。在某些情况下,QD结构的不同随机实现方式的较大变化会导致激子线顺序的反转。理论计算的结果与中性激子和双激子以及三重子的统计性质相对应,这些中子仅限于在我们的显微光谱测量中研究的单个天然QD。我们观察到双激子和三重子结合能的显着变化,以及三重子和双激子能的相关性。还观察到tri的从负结合能到正结合能的跃迁,这强烈支持了观察到的tri的归属于带正电的激子。

著录项

  • 来源
    《Physical review》 |2015年第8期|085303.1-085303.6|共6页
  • 作者单位

    Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland;

    Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland;

    Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland,Laboratoire National des Champs Magnetiques Intenses, CNRS-UJF-UPS-INSA, 25, avenue des Martyrs, 38042 Grenoble, France;

    Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland;

    Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland;

    Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland;

    Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland;

    Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland;

    Laboratoire National des Champs Magnetiques Intenses, CNRS-UJF-UPS-INSA, 25, avenue des Martyrs, 38042 Grenoble, France;

    Laboratoire National des Champs Magnetiques Intenses, CNRS-UJF-UPS-INSA, 25, avenue des Martyrs, 38042 Grenoble, France;

    Waterloo Institute for Nanotechnology, University ofWaterloo 200 University Avenue West, Waterloo, Ontario, CanadaN2L 3G1;

    Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    quantum dots; quantum dots; Ⅲ-Ⅴ semiconductors;

    机译:量子点;量子点;Ⅲ-Ⅴ族半导体;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号