...
首页> 外文期刊>Physical review >Interface-enhanced high-temperature superconductivity in single-unit-cell FeTe_(1-x)Se_x films on SrTiO_3
【24h】

Interface-enhanced high-temperature superconductivity in single-unit-cell FeTe_(1-x)Se_x films on SrTiO_3

机译:SrTiO_3上单单元FeTe_(1-x)Se_x膜中界面增强的高温超导性

获取原文
获取原文并翻译 | 示例
           

摘要

Recently discovered high-temperature superconductivity in single-unit-cell (UC) FeSe films on SrTiO_3 (STO) substrate has stimulated tremendous research interest, both experimental and theoretical. Whether this scenario could be extended to other superconductors is vital in both identifying the enhanced superconductivity mechanism and further raising the critical transition temperature (T_c). Here we successfully prepared single-UC FeTe_(1-x)Se_x (0.1 ≤ x ≤ 0.6) films on STO substrates by molecular beam epitaxy and observed U-shaped superconducting gaps (A) up to ~16.5 meV, nearly ten times the gap value (Δ ~ 1.7 meV) of the optimally doped bulk FeTe_(0.6)Se_(0.4) single crystal (T_c ~ 14.5 K). No superconducting gap has been observed on the second UC and thicker FeTe_(1-x)Se_x films at 5.7 K, indicating the important role of the interface. This interface-enhanced high-temperature superconductivity is further confirmed by ex situ transport measurements, which revealed an onset superconducting transition temperature above 40 K, nearly two times higher than that of the optimally doped bulk FeTe_(0.6)Se_(0.4) single crystal. This work demonstrates that interface engineering is a feasible way to discover alternative superconductors with higher T_c.
机译:最近发现的在SrTiO_3(STO)衬底上的单晶胞(UC)FeSe薄膜中的高温超导性已激发了巨大的实验和理论研究兴趣。在确定增强的超导机制并进一步提高临界转变温度(T_c)方面,是否可以将此方案扩展到其他超导体都是至关重要的。在这里,我们通过分子束外延成功地在STO基板上制备了单UC FeTe_(1-x)Se_x(0.1≤x≤0.6)薄膜,并观察到U形超导间隙(A)高达〜16.5 meV,几乎是间隙的十倍。最佳掺杂的块状FeTe_(0.6)Se_(0.4)单晶(T_c〜14.5 K)的值(Δ〜1.7 meV)。在第二个UC和更厚的FeTe_(1-x)Se_x膜上的5.7 K处未观察到超导间隙,表明该界面的重要作用。界面增强的高温超导性通过异位传输测量得到了进一步证实,它显示出40 K以上的起始超导转变温度,几乎是最佳掺杂的块状FeTe_(0.6)Se_(0.4)单晶的转变温度的两倍。这项工作表明,接口工程是发现具有较高T_c的替代超导体的可行方法。

著录项

  • 来源
    《Physical review》 |2015年第22期|220503.1-220503.6|共6页
  • 作者单位

    State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;

    State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;

    State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;

    Institute of Physics, Chinese Academy of Science, Beijing 100190, China;

    Institute of Physics, Chinese Academy of Science, Beijing 100190, China;

    State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;

    State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;

    State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;

    State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;

    State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;

    State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;

    State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;

    Institute of Physics, Chinese Academy of Science, Beijing 100190, China,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;

    State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;

    State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China,Institute of Physics, Chinese Academy of Science, Beijing 100190, China,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;

    State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    superconducting films and low-dimensional structures; scanning tunneling microscopy (including chemistry induced with STM);

    机译:超导膜和低维结构;扫描隧道显微镜(包括用STM诱导的化学反应);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号