...
首页> 外文期刊>Physical review >Longer-range lattice anisotropy strongly competing with spin-orbit interactions in pyrochlore iridates
【24h】

Longer-range lattice anisotropy strongly competing with spin-orbit interactions in pyrochlore iridates

机译:远距离晶格各向异性与烧绿石铱酸盐的自旋轨道相互作用强烈竞争

获取原文
获取原文并翻译 | 示例
           

摘要

In the search for topological phases in correlated electron systems, materials with 5d transition-metal ions, in particular the iridium-based pyrochlores A_2Ir_2O_7, provide fertile grounds. Several topological states have been predicted but the actual realization of such states is believed to critically depend on the strength of local potentials arising from distortions of the IrO_6 cages. We test this hypothesis by measuring with resonant inelastic x-ray scattering the electronic level splittings in the A = Y, Eu systems, which we show to agree very well with ab initio quantum chemistry electronic-structure calculations for the series of materials with A = Sm, Eu, Lu, and Y. We find, however, that the primary source for quenching the spin-orbit interaction is not a distortion of the IrO_6 octahedra but longer-range lattice anisotropies which inevitably break the local cubic symmetry.
机译:在相关电子系统中寻找拓扑相时,具有5d过渡金属离子的材料(尤其是铱基烧绿石A_2Ir_2O_7)提供了肥沃的土壤。已经预测了几种拓扑状态,但是据信这种状态的实际实现主要取决于IrO_6笼形畸变产生的局部电位的强度。我们通过共振非弹性x射线散射测量A = Y,Eu系统中的电子能级分裂来检验此假设,这表明与A = Y的一系列材料的从头进行量子化学电子结构计算非常吻合Sm,Eu,Lu和Y。但是,我们发现,淬灭自旋轨道相互作用的主要来源不是IrO_6八面体的畸变,而是更长距离的晶格各向异性,这不可避免地破坏了局部立方对称性。

著录项

  • 来源
    《Physical review》 |2014年第11期|115111.1-115111.6|共6页
  • 作者单位

    Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstr. 20, 01069 Dresden, Germany;

    Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada;

    Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada;

    CeNSCMR, Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea;

    CeNSCMR, Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea;

    CeNSCMR, Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea;

    Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str. 38, 01187 Dresden, Germany ,Joint Institute for Nuclear Research, Joliot-Curie 6,141980 Dubna, Russia;

    Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str. 38, 01187 Dresden, Germany ,POSTECH, San 31 Hyoja-dong, Namgu Pohang, Gyeongbuk 790-784, Korea;

    Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada;

    Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstr. 20, 01069 Dresden, Germany ,Department of Physics, Technical University Dresden, D-01062 Dresden, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    strongly correlated electron systems; heavy fermions; phases: geometric; dynamic or topological; quantized spin models; X-ray scattering;

    机译:强相关电子系统;重费米子阶段:几何;动态或拓扑;量化自旋模型X射线散射;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号