...
首页> 外文期刊>Physical review >Superconducting phases in (NH_3)_y,M_xFeSe_(1-z)Te_z (M = Li, Na, and Ca)
【24h】

Superconducting phases in (NH_3)_y,M_xFeSe_(1-z)Te_z (M = Li, Na, and Ca)

机译:(NH_3)_y,M_xFeSe_(1-z)Te_z(M = Li,Na和Ca)中的超导相

获取原文
获取原文并翻译 | 示例
           

摘要

Superconducting phases of (NH_3)_yM_xFeSe_(1-z)Te_z have been synthesized by the intercalation of metal atoms (M: Li, Na, Ca) into FeSe and FeSe_(0.5)Te_(0.5) using a low-temperature liquid NH_3 technique. The superconducting transition temperature (T_c) is 31.5 K for Na-doped FeSe, and for Li-, Na-, and Ca-doped FeSe_(0.5)Te_(0.5) it is 26,22, and 17 K, respectively. The 31.5 K superconducting is the superconducting phase in ammoniated Na-doped FeSe. The T_c is lower than that (onset T_c = 46 K) of the superconducting phase reported previously. The reason why the T_c of this phase is lower is discussed based on the structure. The pressure dependences of T_c in the (NH_3)_yNa_(0.5)FeSe and (NH_3)_yNa_(0.4)FeSe_(0.5)Te_(0.5) samples have been measured and a negative pressure dependence is observed; i.e., a decrease in lattice constant c leads to a decrease in T_c, consistent with the behavior of (NH_3)_yNa_(0.4)FeSe reported previously by our group. Furthermore, the magnetic behavior of (NH_3)_yNa_(0.4)FeSe_(0.5)Te_(0.5) has been fully investigated at different applied magnetic fields (H) to determine the critical magnetic field. This is a successful metal intercalation into FeSe_(1-z)Te_z (z≠0) and an observation of superconductivity.
机译:(NH_3)_yM_xFeSe_(1-z)Te_z的超导相已经通过使用低温液态NH_3技术将金属原子(M:Li,Na,Ca)插入FeSe和FeSe_(0.5)Te_(0.5)中而合成。掺Na的FeSe的超导转变温度(T_c)为31.5 K,掺Li,Na和Ca的FeSe_(0.5)Te_(0.5)的超导转变温度分别为26,22和17K。 31.5 K超导是氨化Na掺杂FeSe中的超导相。 T_c低于先前报道的超导相的T_c(起始T_c = 46 K)。基于该结构,讨论了该阶段的T_c较低的原因。测量了(NH_3)_yNa_(0.5)FeSe和(NH_3)_yNa_(0.4)FeSe_(0.5)Te_(0.5)样品中T_c的压力依赖性,并观察到负压力依赖性。即,晶格常数c的减小导致T_c的减小,这与我们小组先前报道的(NH_3)_yNa_(0.4)FeSe的行为一致。此外,已经对(NH_3)_yNa_(0.4)FeSe_(0.5)Te_(0.5)的磁行为进行了充分研究,以确定其临界磁场。这是成功地将金属嵌入FeSe_(1-z)Te_z(z≠0)并观察到超导性。

著录项

  • 来源
    《Physical review》 |2014年第14期|144509.1-144509.6|共6页
  • 作者单位

    Research Laboratory for Surface Science, Okayama University, Okayama 700-8530, Japan;

    Research Laboratory for Surface Science, Okayama University, Okayama 700-8530, Japan;

    Research Laboratory for Surface Science, Okayama University, Okayama 700-8530, Japan;

    Research Laboratory for Surface Science, Okayama University, Okayama 700-8530, Japan;

    Research Laboratory for Surface Science, Okayama University, Okayama 700-8530, Japan;

    Research Laboratory for Surface Science, Okayama University, Okayama 700-8530, Japan;

    Department of Physics, Okayama University, Okayama 700-8530, Japan;

    Department of Physics, Okayama University, Okayama 700-8530, Japan;

    Department of Physics, Okayama University, Okayama 700-8530, Japan,Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530, Japan;

    Research Laboratory for Surface Science, Okayama University, Okayama 700-8530, Japan,Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号