...
首页> 外文期刊>Physical review >Induced work function changes at Mg-doped MgO/Ag(001) interfaces: Combined Auger electron diffraction and density functional study
【24h】

Induced work function changes at Mg-doped MgO/Ag(001) interfaces: Combined Auger electron diffraction and density functional study

机译:Mg掺杂MgO / Ag(001)界面上的功函数变化:俄歇电子衍射和密度泛函研究的结合

获取原文
获取原文并翻译 | 示例
           

摘要

The properties of MgO/Ag(001) ultrathin films with substitutional Mg atoms in the interface metal layer have been investigated by means of Auger electron diffraction experiments, ultraviolet photoemission spectroscopy, and density functional theory (DFT) calculations. Exploiting the layer-by-layer resolution of the Mg KL_(23)L_(23) Auger spectra and using multiple scattering calculations, we first determine the interlayer distances as well as the morphological parameters of the MgO/Ag(001) system with and without Mg atoms incorporated at the interface. We find that the Mg atom incorporation drives a strong distortion of the interface layers and that its impact on the metal/oxide electronic structure is an important reduction of the work function (0.5 eV) related to band-offset variations at the interface. These experimental observations are in very good agreement with our DFT calculations which reproduce the induced lattice distortion and which reveal (through a Bader analysis) that the increase of the interface Mg concentration results in an electron transfer from Mg to Ag atoms of the metallic interface layer. Although the local lattice distortion appears as a consequence of the attractive (repulsive) Coulomb interaction between O~(2-) ions of the MgO interface layer and the nearest positively (negatively) charged Mg (Ag) neighbors of the metallic interface layer, its effect on the work function reduction is only limited. Finally, an analysis of the induced work function changes in terms of charge transfer, rumpling, and electrostatic compression contributions is attempted and reveals that the metal/oxide work function changes induced by interface Mg atoms incorporation are essentially driven by the increase of the electrostatic compression effect.
机译:通过俄歇电子衍射实验,紫外光发射光谱和密度泛函理论(DFT)计算,研究了界面金属层中具有取代Mg原子的MgO / Ag(001)超薄膜的性能。利用Mg KL_(23)L_(23)Auger光谱的逐层分辨率并使用多次散射计算,我们首先确定层间距以及MgO / Ag(001)系统的形貌参数,其中在界面处没有镁原子。我们发现,掺入Mg原子会驱动界面层发生强烈变形,并且其对金属/氧化物电子结构的影响是与界面处的能带偏移变化有关的功函数(0.5 eV)的重要降低。这些实验观察结果与我们的DFT计算非常吻合,DFT计算再现了引起的晶格畸变,并揭示了(通过Bader分析)界面Mg浓度的增加导致电子从Mg转移到金属界面层的Ag原子。尽管局部晶格畸变是由于MgO界面层的O〜(2-)离子与金属界面层的最近的带正电(负电)的Mg(Ag)相邻分子之间发生吸引(排斥)库仑相互作用的结果,对功函数减小的作用仅是有限的。最后,尝试对电荷转移,起皱和静电压缩贡献方面的感应功函数变化进行分析,结果表明,界面Mg原子掺入引起的金属/氧化物功函数变化基本上是由静电压缩的增加驱动的影响。

著录项

  • 来源
    《Physical review》 |2014年第12期|125433.1-125433.11|共11页
  • 作者单位

    Departement de Physique and Fribourg Center for Nanomaterials, Universite de Fribourg, CH-1700 Fribourg, Switzerland;

    Departement de Physique and Fribourg Center for Nanomaterials, Universite de Fribourg, CH-1700 Fribourg, Switzerland;

    Departement Materiaux et Nanosciences, Institut de Physique de Rennes UMR UR1-CNRS 6251, Universite de Rennes 1, F-35042 Rennes Cedex, France;

    Departement Materiaux et Nanosciences, Institut de Physique de Rennes UMR UR1-CNRS 6251, Universite de Rennes 1, F-35042 Rennes Cedex, France;

    Departement Materiaux et Nanosciences, Institut de Physique de Rennes UMR UR1-CNRS 6251, Universite de Rennes 1, F-35042 Rennes Cedex, France;

    Departement Materiaux et Nanosciences, Institut de Physique de Rennes UMR UR1-CNRS 6251, Universite de Rennes 1, F-35042 Rennes Cedex, France;

    Departement Materiaux et Nanosciences, Institut de Physique de Rennes UMR UR1-CNRS 6251, Universite de Rennes 1, F-35042 Rennes Cedex, France;

    Departement Materiaux et Nanosciences, Institut de Physique de Rennes UMR UR1-CNRS 6251, Universite de Rennes 1, F-35042 Rennes Cedex, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    interfaces; heterostructures; nanostructures; oxide surfaces;

    机译:接口;异质结构纳米结构氧化物表面;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号