...
首页> 外文期刊>Physical review >Phase relations, crystal chemistry, and physical properties of MgZn_2-type Laves phases in the Mn-Cu-Si and Mn-Ni-Si systems
【24h】

Phase relations, crystal chemistry, and physical properties of MgZn_2-type Laves phases in the Mn-Cu-Si and Mn-Ni-Si systems

机译:Mn-Cu-Si和Mn-Ni-Si系统中MgZn_2型Laves相的相关系,晶体化学和物理性质

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, we present the phase relations, crystal structure, and physical properties of the MgZn2-type Laves phases in the Mn-Cu-Si and Mn-Ni-Si systems. Our results evidence that the homogeneous regime of the Laves phase in the Mn-Cu-Si system at 800℃ ranges from 32.5 to 36.7 at.% Mn and from 11.5 to 13.5 at.% Si, indicating the Laves phase in this system having an ideal stoichiometry AB_2, inconsistent with previous reports. For structural and physical property investigations, two alloys with compositions MnCu_(1.65)Si_(0.35) and MnNi_(1.25_Si_(0.75) are considered. In both alloys, Mn atoms are preferably situated at the 4f site and Cu(Ni) and Si share the 2a and 6h sites. Both are antiferromagnets with T_N ≈ 800 K for MnCu1.65Sio.35 and T_N ≈ 630 K for MnNi_(1.25_Si_(0.75). Rietveld refinements of the room-temperature neutron diffraction data demonstrate that in both cases only the Mn atoms carry magnetic moments, which are aligned antiferromagnetically along the c axis. The magnetic moments at room temperature are 2.7μ_B/Mn for MnCui_(1.65)Si_(0.35) and 2.9μ_B/Mn for MnNi_(1.25_Si_(0.75), respectively. The magnetic properties are confirmed by transport, magnetization, NMR measurements, and band-structure calculations.
机译:在这项研究中,我们介绍了Mn-Cu-Si和Mn-Ni-Si系统中MgZn2型Laves相的相关系,晶体结构和物理性质。我们的研究结果表明,Mn-Cu-Si体系中Laves相在800℃时的均匀状态范围为Mn的32.5至36.7 at。%和Si的11.5至13.5 at。%,表明该系统中的Laves相具有理想化学计量比AB_2,与先前的报告不一致。为了研究结构和物理性能,考虑了两种成分为MnCu_(1.65)Si_(0.35)和MnNi_(1.25_Si_(0.75)的合金,在两种合金中,Mn原子最好位于4f处,Cu(Ni)和Si共有2a和6h位置。都是反铁磁体,MnCu1.65Sio.35的T_N≈800 K,MnNi_(1.25_Si_(0.75)的T_N≈630 K.室温中子衍射数据的Rietveld精炼表明在两种情况下室温下的磁矩为MnCui_(1.65)Si_(0.35)为2.7μB/ Mn,MnNi_(1.25_Si_(0.75)为2.9μB/ Mn。磁性通过传输,磁化,NMR测量和能带结构计算得到确认。

著录项

  • 来源
    《Physical review》 |2013年第17期|174416.1-174416.13|共13页
  • 作者单位

    Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10,1040 Vienna, Austria,Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42,1090 Vienna, Austria;

    Institute of Experimental Physics, Karl-Franzens University, Universitaetsplatz 5, A-8010 Graz, Austria;

    Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10,1040 Vienna, Austria;

    Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10,1040 Vienna, Austria;

    Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10,1040 Vienna, Austria;

    Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42,1090 Vienna, Austria;

    Institute of Physical Chemistry, University of Vienna, Waehringerstr. 42,1090 Vienna, Austria;

    Laboratoriumfur Neutronenstreuung, ETHZ & PSI, Villigen, Switzerland;

    Institute of Mineralogy and Crystallography, University of Vienna, Althanstrasse 14, A-1090 Wien, Austria;

    Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10,1040 Vienna, Austria;

    Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10,1040 Vienna, Austria;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    phase diagrams and microstructures developed by solidification and solid-solid phase transformations; antiferromagnetics; magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.);

    机译:通过凝固和固-固相变形成的相图和微观结构;反铁磁磁相边界(包括磁跃迁;超磁性等);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号