首页> 外文期刊>Physical review >Double time window targeting technique: Real-time DMRG dynamics in the Pariser-Parr-Pople model
【24h】

Double time window targeting technique: Real-time DMRG dynamics in the Pariser-Parr-Pople model

机译:双重时间窗瞄准技术:Pariser-Parr-Pople模型中的实时DMRG动态

获取原文
获取原文并翻译 | 示例
           

摘要

We present a generalized adaptive time-dependent density matrix renormalization-group (DMRG) scheme, called the double time window targeting (DTWT) technique, which gives accurate results with nominal computational resources, within reasonable computational time. This procedure originates from the amalgamation of the features of pace keeping DMRG algorithm, first proposed by Luo et al. [Phys. Rev. Lett. 91, 049701 (2003)] and the time-step targeting algorithm by Feiguin and White [Phys. Rev. B 72, 020404 (2005)]. Using the DTWT technique, we study the phenomena of spin-charge separation in conjugated polymers (materials for molecular electronics and spintronics), which have long-range electron-electron interactions and belong to the class of strongly correlated low-dimensional many-body systems. The issue of real-time dynamics within the Pariser-Parr-Pople (PPP) model which includes long-range electron correlations has not been addressed in the literature so far. The present study on PPP chains has revealed that, (ⅰ) long-range electron correlations enable both the charge and spin degree of freedom of the electron, to propagate faster in the PPP model compared to Hubbard model, (ⅱ) for standard parameters of the PPP model as applied to conjugated polymers, the charge velocity is almost twice that of the spin velocity, and (ⅲ) the simplistic interpretation of long-range correlations by merely renormalizing the U value of the Hubbard model fails to explain the dynamics of doped holes/ electrons in the PPP model.
机译:我们提出了一种广义的自适应时间相关密度矩阵重新归一化组(DMRG)方案,称为双时间窗目标(DTWT)技术,该方案可在合理的计算时间内用名义计算资源提供准确的结果。该程序源自于Luo等人首先提出的DMRG算法的融合。 [物理牧师91,049701(2003)]和Feiguin and White [Phys。修订版B 72,020404(2005)]。使用DTWT技术,我们研究了具有长程电子-电子相互作用并属于强相关的低维多体系统类型的共轭聚合物(分子电子和自旋电子材料)中的自旋电荷分离现象。 。迄今为止,尚未有涉及包括远程电子相关性在内的Pariser-Parr-Pople(PPP)模型内的实时动力学问题。当前对PPP链的研究表明,(Hub)远距离电子相关性使电子的电荷和自旋自由度在PPP模型中比Hubbard模型传播得更快,(ⅱ)对于标准参数PPP模型应用于共轭聚合物时,电荷速度几乎是自旋速度的两倍,并且(ⅲ)仅通过重新规范Hubbard模型的U值来简单地解释长程相关性并不能解释掺杂的动力学。 PPP模型中的空穴/电子。

著录项

  • 来源
    《Physical review》 |2010年第3期|P.035115.1-035115.15|共15页
  • 作者单位

    Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India;

    rnSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    quantum wires;

    机译:量子线;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号