首页> 外文期刊>Physical review >Quasiparticle properties of graphene antidot lattices
【24h】

Quasiparticle properties of graphene antidot lattices

机译:石墨烯解毒点阵的准粒子性质

获取原文
获取原文并翻译 | 示例
           

摘要

A periodic array of holes (antidot lattice) transforms graphene from a semimetal into a semiconductor with a tunable band gap. The magnitude of the gap is highly sensitive to the size and separation of the holes. In the present work, the properties of graphene antidot lattices are analyzed using atomistic models. Density-functional theory (DFT) and tight-binding parameterization of DFT bands usually underestimate band gaps and generally produce incorrect results for other properties related to excited states. To correct this error we consider quasiparticle (QP) corrections to the band structure of graphene antidot lattices within the tight-binding parameterization of the graphene QP band structure of Griineis et al. [Phys. Rev. B 78, 205425 (2008)]. In addition, the optical response is calculated from the QP band structure. We find that band gaps increase by about 15% in the QP model when the hole is small compared to the unit cell. Finally, QP effects on excitons are addressed using the Wannier model with a spatially varying screening.
机译:孔的周期性阵列(点阵点阵)将石墨烯从半金属转变为带隙可调的半导体。间隙的大小对孔的大小和间距高度敏感。在目前的工作中,使用原子模型分析了石墨烯解毒点晶格的性质。 DFT带的密度泛函理论(DFT)和紧密绑定参数化通常会低估带隙,并且通常会为与激发态相关的其他特性产生不正确的结果。为了纠正该错误,我们考虑在Griineis等人的石墨烯QP能带结构的紧密结合参数化中,对石墨烯解毒点晶格的能带结构进行准粒子(QP)校正。 [物理B 78,205425(2008)。另外,根据QP带结构来计算光学响应。我们发现,与孔相比,当孔较小时,QP模型中的带隙增加了约15%。最后,使用具有空间变化筛选的Wannier模型解决了QP对激子的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号