...
首页> 外文期刊>Physical review >Surface symmetry breaking and disorder effects on superconductivity in perovskite BaBi_3 epitaxial films
【24h】

Surface symmetry breaking and disorder effects on superconductivity in perovskite BaBi_3 epitaxial films

机译:钙钛矿BaBi_3外延膜中表面对称性的破坏和无序对超导性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The structural or electronic symmetry breaking of the host lattice is a recurrent phenomenon in many quantum materials, including superconductors. Yet, how these broken-symmetry states affect the electronic pair wave function of superconductivity has been rarely elucidated. Here, using low-temperature scanning-tunneling microscopy and first-principles calculations, we identify the broken rotational symmetry via stripe ordering on the (001) surface of perovskile BaBi_3 films grown by molecular-beam epitaxy, and show that it consequently leads to anisotropic superconductivity with twofold symmetry. In contrast, the structural disorder smears out the anisotropy of electron pairing and fills superconducting subgap density of states as the film thickness is reduced. A quasi-long-range model of superconducting fluctuations is revealed to describe the tunneling conductance spectra of thin BaBi_3 films well, and to exemplify how disorders contribute to the low-energy quasiparticle excitations in superconductors. Our findings help understand the effects of symmetry-breaking states and disorders on superconductivity, particularly the existing tunneling conductance spectra there.
机译:主体晶格的结构或电子对称性破坏是包括超导体在内的许多量子材料中的反复现象。然而,很少阐明这些破碎对称状态如何影响超导的电子对波函数。在这里,使用低温扫描隧道显微镜和第一性原理计算,我们通过分子束外延生长的钙钛矿BaBi_3膜的(001)表面上的条纹有序化来识别破坏的旋转对称性,并表明它导致各向异性具有双重对称性的超导。相反,随着膜厚度的减小,结构紊乱抹去了电子对的各向异性并填充了超导亚能级密度。揭示了一种超导波动的准远程模型,该模型很好地描述了BaBi_3薄膜的隧穿电导谱,并举例说明了无序如何促进超导体中低能准粒子的激发。我们的发现有助于理解对称破坏状态和紊乱对超导性的影响,特别是那里现有的隧道电导谱。

著录项

  • 来源
    《Physical review》 |2018年第6期|064511.1-064511.10|共10页
  • 作者单位

    Stale Key Laboratory of Ijow-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;

    Stale Key Laboratory of Ijow-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;

    Stale Key Laboratory of Ijow-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;

    Stale Key Laboratory of Ijow-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;

    Stale Key Laboratory of Ijow-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;

    Stale Key Laboratory of Ijow-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;

    Stale Key Laboratory of Ijow-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;

    Stale Key Laboratory of Ijow-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;

    Stale Key Laboratory of Ijow-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;

    Stale Key Laboratory of Ijow-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;

    Stale Key Laboratory of Ijow-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China,RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan;

    Stale Key Laboratory of Ijow-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China,Institute for Advanced Study, Tsinghua University, Beijing 100084, China;

    Stale Key Laboratory of Ijow-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;

    Stale Key Laboratory of Ijow-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号