...
首页> 外文期刊>Physical review >Optical excitations in compressible and incompressible two-dimensional electron liquids
【24h】

Optical excitations in compressible and incompressible two-dimensional electron liquids

机译:可压缩和不可压缩的二维电子液体中的光学激发

获取原文
获取原文并翻译 | 示例
           

摘要

Optically generated electron-hole pairs can probe strongly correlated electronic matter, or, by forming exciton-polaritons within an optical cavity, give rise to photonic nonlinearities. The present paper theoretically studies the properties of electron-hole pairs in a two-dimensional electron liquid in the fractional quantum Hall regime. In particular, we quantify the effective interactions between optical excitations by numerically evaluating the system's energy spectrum under the assumption of full spin and Landau level polarization. Optically most active are those pair excitations which do not modify the correlations of the electron liquid, also known as multiplicative states. In the case of spatial separation of electrons and holes, these excitations interact repulsively with each other. However, when the electron liquid is compressible, other nonmultiplicative configurations occur at lower energies. The interactions of such dark excitations strongly depend on the liquid, and can also become attractive. For the case of a single excitation, we also study the effect of Landau level mixing in the valence band which can dramatically change the effective mass of an exciton.
机译:光学产生的电子孔对可以探测强烈相关的电子物质,或者通过在光学腔内形成激子 - 极性官,引起光子非线性。本文理论上地研究了分数量子霍尔制度中的二维电子液体中的电子 - 空穴对的性能。特别地,我们通过在全旋转和Landau水平极化的假设下数值评估系统的能谱来量化光激发与光学激发之间的有效相互作用。光学最活跃的是那些不改变电子液体的相关性的对激发,也称为乘法状态。在电子和孔的空间分离的情况下,这些激励彼此排斥地相互作用。然而,当电子液体是可压缩的时,在较低的能量下发生其他非潜在的配置。这种黑色激发的相互作用强烈取决于液体,也可以变得有吸引力。对于单一激励的情况,我们还研究了Landau水平混合在价带中的效果,这可以显着改变激子的有效质量。

著录项

  • 来源
    《Physical review》 |2020年第15期|155127.1-155127.11|共11页
  • 作者单位

    ICFO-Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology 08860 Casteltdefels Barcelona Spain;

    Institute of Quantum Electroncis ETH Zuerich CH-8093 Zuerich Switzerland;

    Institute of Quantum Electroncis ETH Zuerich CH-8093 Zuerich Switzerland;

    Joint Quantum Institute NIST and University of Maryland College Park Maryland 20742 USA Department of Electrical Engineering and Institute for Research in Electronics and Applied Physics University of Maryland College Park Maryland 20742 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号