首页> 外文期刊>Physical review >Density functional calculations for structures and energetics of atomic steps and their implication for surface morphology on Si-face SiC polar surfaces
【24h】

Density functional calculations for structures and energetics of atomic steps and their implication for surface morphology on Si-face SiC polar surfaces

机译:原子阶段结构和能量计算的密度函数计算及其对Si面SiC极性表面的表面形态的含义

获取原文
获取原文并翻译 | 示例
           

摘要

We perform large-scale densily-functional calculations using the real-space finite-difference scheme endorsed by the Gordon Bell prize in 2011 that reveal detailed atomic and electronic structures of atomic steps on silicon carbide (SiC) polar surfaces for the first time. The accurate structural optimization elucidates characteristic atomic reconstruction among the upper and lower edge atoms, which is peculiar to compound semiconductors having both covalent and ionic nature. The calculated formation energies of all the possible atomic steps lead us to unequivocally identify the abundant atomic steps on the Si-face SiC polar surfaces. The energetics thus obtained for the atomic steps provides a natural and persuasive microscopic reason for the difference in the step morphology observed experimentally, i.e., the meandering and straight step edges depending on the inclined direction on the polar vicinal SiC surfaces. Electron states caused by those atomic steps are also calculated, which assists in the identification of the atomic steps by future experiments.
机译:我们使用Gordon Bell奖奖的实际有限差异方案在2011年进行了大规模的密度功能计算,其首次揭示了碳化硅(SiC)极性表面上的原子步骤的详细原子和电子结构。精确的结构优化阐明了上边缘和下边缘原子的特征原子重建,这对于具有共价和离子性质的化合物半导体是特殊的。所计算的所有可能原子步骤的形成能量导致我们明确地识别Si面SiC极性表面上的丰富原子步骤。由此获得的原子步骤所获得的能量是为实验观察到的步骤形态的差异的自然和有说服力的显微原因,即,根据极性张开表面上的倾斜方向而观察到的曲面和直的步进边缘。还计算了由那些原子步骤引起的电子状态,有助于通过未来的实验识别原子阶段。

著录项

  • 来源
    《Physical review》 |2020年第19期|195307.1-195307.10|共10页
  • 作者

    Kaori Seino; Atsushi Oshiyama;

  • 作者单位

    Institute of Materials and Systems for Sustainability Nagoya University Furo-cho Chikusa-ku Nagoya 464-8601 Japan X-Ability Co. Ltd. Hongo Bunkyo-ku Tokyo 113-0033 Japan;

    Institute of Materials and Systems for Sustainability Nagoya University Furo-cho Chikusa-ku Nagoya 464-8601 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号